# Theory of interferometric data processing

Jean-Baptiste LeBouquin (ESO, Chile)

With contributions: G.Perrin, C.Hummel, E.Tatulli, F.Millour...

ONTHEFRINGE Summer School - 27 August - 7 September, 2007, Torun



What are we looking for ?

## Outline

- What are we really looking for ?
- What are we fighting against ?
- Statistics of the observables
- Calibration and final errors estimate
- Data reduction of the AMBER instrument
- Data reduction of the MIDI instrument
- Conclusions

## Outline

- What are we really looking for ?
  - > Small recall of interferometric observables / observation
  - > How do we practically form the fringes ?
  - > A simple but unrealistic estimator
  - What are we fighting against ?
  - Statistics of the observables
  - Calibration and final errors estimate
  - Data reduction of the AMBER instrument
  - Data reduction of the MIDI instrument
  - Conclusions

### Principle of interferometric observations



- Interferometric observables
  - νisibility μ et phases φ
  - fonction of the target shape :

 $\mu e^{i\phi} = TF\{objet\}(b/\lambda)$ 



### Principle of interferometric data analysis

- Partially resolved
  - ➢ diam = 3 − 1 mas
  - $\rightarrow$  constraint the diameter
- Resolved
  - > diam > 3 mas
  - → parametric analyze of features (positions, amplitudes...)
- Resolved and good uv-sampling
  - diam > 3 mas
  - > a lot of telescopes/baselines
  - $\rightarrow$  aperture synthesis imaging



# Combination types: Spatial or Fizeau

• Overlap the beams with a lens:



• The opd is spatially modulated:

I ~ 
$$\mu$$
 . cos(2 $\pi$  S.f /  $\lambda$  . x +  $\varphi$ )

### **Combination types: Temporal or Michelson**

• Overlap the beams with a beam-splitter:

• The OPD is modulated temporally:

 $I \sim \mu \cdot \cos(2\pi v/\lambda \cdot t + \phi)$ 

$$I \sim \mu \ . \ cos(2\pi \ opd/\lambda \ + \ \phi)$$

# Fringe size: order of magnitude...

 $I \sim \mu \cdot \cos(2\pi \text{ opd}/\lambda + \phi)$ 

- The fringe spacing is the wavelength of the light, so few  $\mu m$  in the near-IR
  - Precise instrumentation
  - Mechanical vibrations are "killers"
- When observing with a large spectral ۲ bandwidth, the fringe packet becomes small:
  - $R=500 \rightarrow \Delta \sim 0.75 mm$
  - R=25  $\rightarrow \Delta \sim 7.5 \,\mu\text{m}$
- Important to observe close to the zero-۲ opd position, which requires a precise knowledge of:

 $\rightarrow$  the position on the star on sky

 $\rightarrow$  the internal opd of the instrument



### A simple estimator

 $I \sim \mu . \cos(2\pi \text{ opd}/\lambda + \phi)$ 

- A priori no issue at all:
  - $\succ$  We just need to measure a modulation of amplitude  $\mu$  and phase  $\phi$  ...
  - > This can easily be done by sampling at opd =  $\lambda$ . [0, 0.25, 0.5, 0.75]

### ABCD sampling:



### So, what are the issues ?

• The previous estimators:  $I \sim \mu \cdot \cos(2\pi \text{ opd}/\lambda + \phi)$ 

$$\rho = \frac{B-D}{A-C}$$

$$\mu^{2} = \frac{(A-C)^{2} + (B-D)^{2}}{(A+B+C+D)^{2}}$$

• Work well on these data...



... but not so well on real data, even at high SNR:



Why?

Estimators robust to noise are necessary

## Outline

- What are we really looking for ?
- What are we fighting against ?
  - > Additive noises and bias: sky, detector, photon...
  - > Photometry unbalance
  - > Atmospheric turbulence
    - description
    - how to deal with
  - Atmospheric piston
    - description
    - how to deal with
  - Statistics of the observables
  - Calibration and final errors estimate
  - Data reduction of the AMBER and MIDI instruments
  - Conclusions

### Additives noises and biases

$$I \sim \mu \cos(2\pi \operatorname{opd}/\lambda + \varphi) + n_b + \sigma$$

- Photon noise
- Background level: sky emission + dark current
- Detector readout noise

 $\Rightarrow$  Removed by classical treatments: dark and sky exposures, chopping...



Sky intensity measured by AMBER

Sky brightness increases drastically after  $2\mu m$ 

### AMBER dark exposures



Detector fringes induced by electromagnetic interferences (Li Causi et al. 2007).

### What are we fighting against ?

## **Photometry unbalance**

- Effective contrast of the fringes depends on the photometry balance between the input beams:
- Degrade the precision on the measure of both  $\mu$  and  $\phi$
- Change the measure of  $\mu$ , so should be calibrated
- Simultaneous measures of Ia and Ib
  - Loss of flux for the fringes
  - Better accuracy
- $\Rightarrow$  Sequence of exposures fringes, Ia, Ib:
  - Better sensitivity
  - Assume the conditions are stables

$$I \sim 2 \frac{\sqrt{I_a I_b}}{I_a + I_b}$$
.  $\mu \cos(2\pi \operatorname{opd}/\lambda + \varphi)$ 



# Atmospheric turbulence and piston: vocabulary

- Atmospheric turbulence cells distort the stellar wavefront
- Distortion over the pupil size is called:
  - turbulence
- Global shift between the pupils is called:

M11

49

410

piston 



# Turbulence: fringe blurring



 $I \sim e^{-\sigma_{turb}^2}$ .  $\mu \cos(2\pi \operatorname{opd}/\lambda + \varphi)$ 

- Visibility is reduced by the wavefront variance over the pupil.
  - Do nothing if the turbulence is small (IR - interferometry)
  - Reduce the telescope pupils
  - Use a perfect Adaptive Optics system (the best solution)
  - Use another technique to flatten the wavefronts

The "turbulent" visibility loss should be calibrated frequently

### Turbulence: modal filtering

- The input wavefront is flatten by a single-mode fiber
- In fact, the "corrugated part" of the wavefront is rejected by the fiber:
  - Important flux loss if not used with Adaptive Optics or small telescopes



Phase fluctuations are traded against fast intensity fluctuations...
But these fluctuations can be measured and corrected.



$$I \sim 2 \frac{\sqrt{I_a I_b}}{I_a + I_b} \cdot e^{-\sigma_{turb}^2} \cdot \mu \cos(2\pi \operatorname{opd}/\lambda + \varphi)$$

$$I \sim 2 \frac{\sqrt{I_a(t)I_b(t)}}{I_a(t) + I_b(t)} \cdot 1 \cdot \mu \cos(2\pi \operatorname{opd}/\lambda + \varphi)$$

### Turbulence: example of modal filtering



Perfect Airy disk

Photométrie A

Interférométrie 1

Interférométrie 2

Photométrie B

# Atmospheric turbulence and piston: vocabulary

- Atmospheric turbulence cells distort the stellar wavefront
- Distortion over the pupil size is called:
  - turbulence
- Global shift between the pupils is called:

M11

Λ9

410

piston 



# Piston: fringe motion and blurring

- Piston jitter during an exposure blur the fringes visibility:
  - use short exposure only (50ms)
  - use a fringe tracker
- Fringes are displaced by the averaged piston value during the exposure:
  - measured phase is meaningless







What are we fighting against ?

### Piston: How to recover some phase information ?



### Summary: real data looks like...





1 - Photometry unbalance (visibility loss)

- 2 Turbulence over the pupil (fringe blurring)
- **3** Piston jitter during the exposure *(fringe blurring)*
- 4 Averaged piston during the exposure (fringe displacement)
- 5 Averaged piston during the exposure (visibility loss due to the packet finite size)
- 6 Sky brightness and dark current (additive bias and noise)
- 7 Detector readout noise and photon noise (additive noise)

# Summary: real data look like...

### Real-time AMBER raw data



Amber 3T JHK LowResolution Fringes !

What are we fighting against ?

## Outline

- What are we really looking for ?
- What are we fighting against ?
- Statistics of the observables
  - > What do a data-set looks like ?
  - Visibility estimators
  - Phase estimators
  - Summary of the observables properties
  - Calibration and final errors estimate
  - Data reduction of the AMBER instrument
  - Data reduction of the MIDI instrument
  - Conclusions

### Statistics : what do a data-set looks like ?



- I consider only the effects of:
  - piston
  - additive noise
- The issue is to average the different measurements:

 $\nu \sim \mu e^{i\varphi}$ 

- Final visibility can be obtained by
  - coherent average:

$$\tilde{\mu} = | < \nu > |$$

incoherent average:

$$\tilde{\mu} = < |\nu| > = < \mu >$$

## Visibility: coherent versus incoherent average





# Visibility: effect of the multiplicative terms !



- All estimators are biased by multiplicative terms
- Non stationary phenomena (vibration, turbulence, jitter blurring...)
- Extremely hard to calibrate during the exposure
  - Assumed to be the same on the science and calibration stars



### **Observables properties : summary**

- Incoherent average of the visibilities
  - insensitive to piston
  - biased by additive noises
  - biased by multiplicative noises
- Coherent average of visibilities
  - piston should be know / removed
  - > not biased by additive noises
  - biased by multiplicative noises

- Differential phase / Closure-phase
  - absolute phase lost
  - > not biased by noises, easier to calibrate
  - error estimation requires bootstrapping

These visibility loss should be calibrated frequently



## Outline

- What are we really looking for ?
- What are we fighting against ?
- Statistics of the observables



- > Principle
- Computing/calibrating from the transfer function
- Examples
- Error propagations and correlations
- Data reduction of the AMBER instrument
- Data reduction of the MIDI instrument
- Conclusions

# Principle of calibration

observing time



- Why calibrate ?
  - > multiplicative visibility loss
  - reference of the differential-phase / closure-phase
- How calibrate ? By measuring them on a known star:
  - same atmospheric conditions: close in time
  - same injection conditions: similar flux
  - > same detector parameters: frame rate, number of frames...
  - same instrument setup: filter, spectral resolution...

About half of a night is spend on calibration stars

### Computing and calibrating the transfer function

- 1. Measure the visibility on the science target and (at least) on one calibrator:
- 2. Derive the expected visibility of the calibrator (usually assuming a Uniform Disk):
- 3. Compute the instantaneous transfer function:
- 4. Compute the transfer function at the time of the science observations
  - averaging / interpolating / splining...
- 5. Calibrate the visibility of the science target:

1. 
$$\tilde{\mu}_{sci}^{2}(t_{s})$$
  $\tilde{\mu}_{cal}^{2}(t_{c})$   
2.  $\mu_{theo} = 2|\frac{J_{1}(\pi.\theta.B/\lambda)}{\pi.\theta.B/\lambda}|$   
3.  $T^{2}(t_{c}) = \frac{\tilde{\mu}_{cal}^{2}(t_{c})}{\mu_{theo}^{2}(t_{c})}$   
4.  $T^{2}(t_{s}) = f(T^{2}(t_{c}))$   
5.  $\mu_{sci}^{2}(t_{s}) = \frac{\tilde{\mu}_{sci}^{2}(t_{s})}{T^{2}(t_{s})}$ 

### Examples of transfer function (IOTA and AMBER)



### Time

- time when science sources have been observed
- transfer function estimated on calibrators, with associated errors



### gray: raw visibilities

black: estimated transfer function = visibilities divided by the theoretical ones

### Final error bars computation

- Error sources:
  - raw visibilities
  - calibrator diameter
  - calibrator model (really a UD ?)
- Error propagation not trivial:
  - statistic / systematic errors
- Classical formula only work if:
  - > the errors are really small (!)
  - the statistics are Gaussian (!)
- Otherwise: simulate the random variables distribution and compute the variance of the simulated results:
  - work with large errors

1.  $\tilde{\mu}_{sci}^{2}(t_{s})$   $\tilde{\mu}_{cal}^{2}(t_{c})$ 2.  $\mu_{theo} = 2 \left| \begin{array}{c} J_{1}(\pi.\theta.B/\lambda) \\ \pi(\theta.B/\lambda) \\ \pi(\theta.B/\lambda) \end{array} \right|$ 3.  $T^{2}(t_{c}) = \frac{\tilde{\mu}_{cal}^{2}(t_{c})}{\mu_{theo}^{2}(t_{c})}$ 4.  $T^{2}(t_{s}) = f(T^{2}(t_{c}))$ 

5. 
$$\mu_{sci}^2(t_s)=rac{ ilde{\mu}_{sci}^2(t_s)}{T^2(t_s)}$$

### The issue of 'systematics' in data analysis



- Red are observed (and calibrated) points on a science target
- Error looks to be properly estimated since the dispersion is consistent
- UD disk model fails to fit the data set within the error bars
- A more evolved disk+UD model looks much better (great!)
- But if I multiply all points by 1.05 (green)... the data are now able to well fit a simple UD.
- Such factor is about the systematic error on the transfer function due to the calibrator size (5%)

## Outline

- What are we really looking for ?
- What are we fighting against ?
- Statistics of the observables
- Calibration and final errors estimate
- Data reduction of the AMBER instrument
  - > Description of the instrument
  - Internal calibrations
  - Data reduction work flow
  - Inspecting the data products
- Data reduction of the MIDI instrument
- Conclusions

- Use 3 telescopes of VLTI
  - closure-phase
- Near-IR: J, H and K bands
  - Single-mode filtering
  - Simultaneous photometry monitoring
- Spectral dispersion (y-axis on detector)
  - > differential visibilities / phases
- Spatial combination (opd is x-axis on detector)



# AMBER: 3 fringes in a single beam and 3 photometric beams



### **AMBER** internal calibrations

### • Need for a internal calibration:

- relative flux in the photometric and interferometric beams
- $\succ$  relative transmission in  $\lambda$
- wavelength table
- disentangle the 3 fringe patterns by a fringe fitting technique
- Internal calibration depends
  - > on setup (band, resolution...)
  - > on time (unstable)
- Calibration sequence:
  - wavelength calibration
  - > one beam at a time (1)
  - > one pair at a time (2)



### **AMBER** internal calibrations

| Step | Shutter 1 | Shutter 2 | Shutter 3 | Phase $\gamma_0$ | DPR key    |
|------|-----------|-----------|-----------|------------------|------------|
| 1    | Open      | Closed    | Closed    | NO               | 2P2V, 3P2V |
| 2    | Closed    | Open      | Closed    | NO               | 2P2V, 3P2V |
| 3    | Open      | Open      | Closed    | NO               | 2P2V, 3P2V |
| 4    | Open      | Open      | Closed    | YES              | 2P2V, 3P2V |
| 5    | Closed    | Closed    | Open      | NO               | 3P2V       |
| 6    | Open      | Closed    | Open      | NO               | 3P2V       |
| 7    | Open      | Closed    | Open      | YES              | 3P2V       |
| 8    | Closed    | Open      | Open      | NO               | 3P2V       |
| 9    | Closed    | Open      | Open      | YES              | 3P2V       |

### The Pixel 2 Visibility Matrix (P2VM) sequence...

The reduced product of this sequence is called the P2VM... and allows to reduce the data

### **AMBER** detector issues

- Classical issues of IR-detector:
  - flat-field map
  - bad pixel map
- Other issues are exacerbated due to fast read-out:
  - noise structure
  - detector remanents
  - > synchronizations...

### Dark exposures



### Detector fringes due to electromagnetic interferences (Li Causi, 2007).





### Flat field map



# AMBER reduction work-flow



### AMBER raw data inspection



43

## AMBER intermediate OI product inspection



- Data set:
  - bright super giant star
  - 3 UTs data
  - good quality
  - visibilities small
- Observation/Star information:
  - > DIT, seeing, setup...
- Histogram of OI observables:
  - 1. flux
  - 2. visibilities,
  - 3. closure-phase
  - 4. piston(t)

### AMBER final OI product inspection



- Strongly selected data: 20% best frames sorted by SNR
- Visibilities:
  - > small ( $\mu^2 < 0.02$ )
  - > good accuracy on the visibilities
  - errors do not take into account calibration (not done yet)
- Phases:
  - > differential phases are "flat"
  - closure phase is  $\sim \pi$

Let's calibrate these data and do astrophysics...

### AMBER OI product: "faint target" case



• Data set:

- faint young star: H=5.6mag
- 3 ATs data
- good quality for this target
- visibilities large (0.5)

### Histogram of OI observables:

- 1. flux
- 2. visibilities,
- 3. closure-phase
- 4. piston(t)

### • What is hard in such dataset:

- noisy !
- > visibility histograms are asymmetric
- phase histogram is noisy and wrapped

# Outline

- What are we really looking for ?
- What are we fighting against ?
- Statistics of the observables
- Calibration and final errors estimate
- Data reduction of the AMBER instrument
- Data reduction of the MIDI instrument
  - Description of the instrument
  - Data reduction work-flow
- Conclusions

# The MIDI instrument

- Use 2 telescopes of the VLTI
- Thermal-IR
  - $\rightarrow$  telescope chopping
- Temporal combination (opd change with time)
- Spectral dispersion



# The MIDI instrument

- Turbulence is smaller at 10µm, so it is less an issue than for AMBER
- Main issue is the thermal background !

### Observation sequence:

- Fringe data (opd modulation)
  - > HIGH\_SENS (no chopping)
  - SCI\_PHOT (chopping)
- Photometry (chopping on)
  - shutter A open
  - shutter B open



### **HIGH-SENS** Principles



- 1. Observe fringes:
  - opd modulation
  - without chopping: background is removed by doing:  $I = I^+ I^-$
- 2. Observe the photometries:
  - no opd modulaiton
  - shutter in beam A and then B
  - chopping required
- Good sensitivity
- Photometry non simultaneous
   ⇒ bias in the visibilities

Dedicated to faint objects

### The MIDI instrument

## **SCI\_PHOT Principles**



- 1. Observe fringes and photometry:
  - opd modulation
  - chopping required
- 2. Observe the photometries:
  - shutter in beam A and then B
  - chopping required
  - only used to know the splitting ratio photometry / fringes (Kappa matrix)
- Less sensitivity since the flux is split between photometry and fringes
- Photometry simultaneous with fringes
  - $\Rightarrow$  less bias in the visibilities
  - $\Rightarrow$  less photometric noise

### Dedicated to bright objects

### The MIDI instrument

### MIDI reduction work-flow



### Visual inspection recommended on:

- reduced fringes
- reduced visibility set (histogram)

### Several 'tuning' possible for experts:

- definition of masks
- ... (I am not an expert!)

# Outline

- What are we really looking for ?
- What are we fighting against ?
- Statistics of the observables
- Calibration and final errors estimate
- Data reduction of the AMBER instrument
- Data reduction of the MIDI instrument
- Conclusions

# Conclusions

- Interferometric observables are visibility and phase of the fringes
- Visibility is disturb by noises and atmospheric turbulence:
  - visibility is systematically reduced
  - therefore calibration is critical
- Absolute phase is lost but:
  - > differential phase / closure-phase
  - > these quantities are more robust that visibility to the turbulence
- Calibration errors should be carefully taken into account
- Data reduction is still a "research field", at least for the AMBER instrument
- Improvements are contemplated:
  - On-axis FINITO fringe-tracking (bright target)
  - > Off-axis PRIMA fringe-tracking (faint target)
  - PACAM real-time logging...