Models for jet power in elliptical galaxies: support for rapidly spinning black holes

Rodrigo Nemmen^{1,4}, Thaisa Storchi-Bergmann¹, Richard G. Bower², Arif Babul³

1. UFRGS, Brazil 2. Durham Univ., UK 3. Univ. of Victoria, Canada 4. Penn State, USA Nemmen et al., 2007, MNRAS, 377, 1652

Goals

Improve existing analytic models for the jet power (Blandford-Znajek-like)

Apply these models to giant elliptical galaxies, to explain the empirical correlation $\dot{M}_{\rm Bondi} \times P_{\rm jet}$ and constrain the s central supermassive black holes and constrain the spins of the

Models of jet power

Blandford-Znaiek-like models: used the original BZ model (BZ 77) and an hybrid version of BZ and Blandford-Payne model (as in Meier 2001 ApJ)

Improvements: (A) model the accretion flow as ADAF (advection-dominated accr. flow) (or RIAF), (B) incorporate some importante GR effects near the BH.

Results (part I)

Jet efficiencies predicted from models for high i (=a/M)are comparable to the thin disk radiative efficiency

The *j*-dependence of P_{iet} is very steep, resembling the results of complex MHD simulations (McKinney 05, Hawley & Krolik 06)

Data

From S. Allen et al. 06 (MNRAS): Chandra observations of 9 nearby Xray luminous elliptical galaxies, with clear X-ray cavities inflated by jets

NGC507 NGC4374 NGC4472 M87 NGC4552 NGC4636 NGC4696 NGC5846 NGC6166

Chandra X-ray images 0.5 - 8 keV (colour), VLA radio 1.5 GHz (contours), cavities (ellipses)

Jet powers: from energies and timescales required to inflate the cavities

$$E_{\text{bubble}} = E_{\text{bubble}} / t_{\text{age}}$$
$$E_{\text{bubble}} = 4PV$$
$$t_{\text{age}} = R / c_s$$

Main result from Allen+06: Tight correlation between accretion rates and jet powers!

$$g \frac{P_{\text{Bondi}}}{10^{43} \text{erg s}^{-1}} = A + B \log \frac{P_{\text{jet}}}{10^{43} \text{erg s}^{-1}}$$
$$P_{\text{Bondi}} \equiv 0.1 \dot{M}_{\text{Bondi}} c^2$$

Results (part II) Constraints on black hole spins

lc

Jet models predict $P_{\rm iet} \propto M_{\rm isco}$

 $\varepsilon_{\text{Bondi}}$ parameter is introduced: $\dot{M}_{\text{isco}} = \varepsilon_{\text{Bondi}} \dot{M}_{\text{Bondi}}$ because Bondi formula is not ok for ADAFs, and there may be winds in the disk Models then predict $A = \log \left[0.1 / \left(\varepsilon_{\text{Bondi}} \eta_{\text{jet}}(\alpha, j) \right) \right]$

Fitting the data of Allen+06 we get A: can constrain the spin j!

High values of *j* agree with theory/obs.:

- Cosmological simulations of spin evolution (Volonteri+05,+07)
- "Soltan's argument" applied to guasar populations (Soltan 82, Yu & Tremaine 02, Wang+06)