Adaptive Optics: Observations \& Prospects for AGN Studies

Richard Davies
Max Planck Institute for Extraterrestrial Physics
Garching, Germany
> Adaptive Optics Concepts \& Techniques
> QSOs at High and Low Redshift
> The Galactic Center
> Nearby AGN
> Future Perspectives

Phrases to avoid

'quiescent AGN' is an oxymoron

'active AGN' is a tautology

3. The Galactic Center

main references:
everything published in the last few years by
Genzel's group at MPE, Germany
Ghez's group at UCLA, USA
Eckart's group at Uni Köln, Germany
$>$ Stars \& their Orbits
> Paradox of Youth
$>$ Why so faint?
$>$ Infrared \& X-ray Flares
\Rightarrow Next Steps into the Galactic Center

The Galactic Center

radio continuum (VLA)

- proper motion $6 \mathrm{mas} / \mathrm{yr}$ in galactic plane
- after accounting for sun's motion, residual is $0.4+/-0.9 \mathrm{~km} / \mathrm{s}$
- SgrA* * contains $>10 \%$ of central mass
e.g. Reid et al. 2004

Density of Stars

e.g. Ott et al. 2003,

Schoedel et al. 2006

Right Ascension
stellar cluster is centered on SgrA* to within $+/-0.2^{\prime \prime}$ (note that the light peaks on IRS7, which is a very bright complex)

Proper \& Radial Orbital Motions

S2 closest approach to SgrA* was 17 light-hours, at which point it had velocity $8000 \mathrm{~km} / \mathrm{s}$. 15.2 yr orbital period \& 4.4mas semimajor axis give, with Kepler's $3^{\text {rd }}$ law, the central mass:

$$
\begin{aligned}
& \left(\frac{P}{2 \pi}\right)^{2}=\frac{a^{3}}{G(M+m)} \\
& M_{0} \quad 3.4 \pm 0.24 \quad(\pm 0.3) 10^{6} \quad\left(M_{\odot}\right) \\
& R_{0} \quad 7.4 \pm 0.23 \quad(\pm 0.5) \quad(\mathrm{kpc})
\end{aligned}
$$

MPE-Köln
e.g. Eisenhauer et al. 2005
(mass contained within a few light hours of SgrA*)

Central Mass Density

radius (light hours)

Hypothesis for a dark cluster of low mass stars, neutron stars, or black holes can be rejected since its density would imply a lifetime of only $10^{5} \mathrm{yrs}$, but stars in the centre are much older.

Paradox of Youth

$>90 \%$ of all K<16 stars in the central cusp are young main sequence B stars

Paradox of Youth

Normal, non-coherent, two body relaxation requires 150 Myr for stars to migrate to central parsec. This is too slow: longer than the main sequence lifetime of stars $>2 \mathrm{M}_{\text {sun }}$ (e.g. S 2 is $15 \mathrm{M}_{\text {sun }}$ with lifetime $\sim 10 \mathrm{Myr}$). So how did they get there?

local star formation:

tidally disrupted 'dispersion ring' evolving into a star forming accretion disk.
problem: very high densities

external formation:

transport by in-spiraling massive cluster.
problem: very large cluster mass and density

transport by scattering:

star/stellar-BH scattering
problem: large number of stellar BHs, large number of B stars on eccentric orbits
old stars masquerading as youths:
rejuvenation by merging or stripping
problem: merger number \& rates, speed of stars, normalcy of S stars

Why is SgrA* so Faint?

$>\mathrm{dM} / \mathrm{dt}: \sim 10^{-3} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ at $\mathrm{R} \sim 50 \mathrm{pc}$

$$
\sim 10^{-4} \mathrm{M}_{\odot} \mathrm{yr}^{-1} \text { at } \mathrm{R} \sim 1 \mathrm{pc}
$$

$$
\sim 10-5.6 \mathrm{M}_{\odot} \mathrm{yr}^{-1} \text { at } \mathrm{R} \sim 0.01 \mathrm{pc}
$$

$$
\sim 10^{-8} \mathrm{M}_{\odot} \mathrm{yr}^{-1} \text { at } \mathrm{R}_{\mathrm{s}} \sim 3 \times 10^{-7} \mathrm{pc}
$$

$>\mathrm{dM} / \mathrm{dt} \sim 10^{2}$ times greater $\sim 10^{2.5}$ years ago
$>\mathrm{dM} / \mathrm{dt}$ strongly dependent on angular momentum distribution of stars in central cusp; \& highly variable

Hard X-rays compton scattered \& reprocessed by nearby molecular cloud suggest SgrA* was low luminosity AGN ($\sim 10^{39} \mathrm{erg} \mathrm{s}^{-1}$ at $2-200 \mathrm{keV}$) 300-400 yrs ago. (Revnivtsev et al. 2004)

Cuadra \& Nayakshin 2006 model:

- fast $700 \mathrm{~km} / \mathrm{s}$ young stellar winds; slow $200 \mathrm{~km} / \mathrm{s}$ winds; orbital motion of stars
- mean accretion rate onto $\mathrm{BH} 3 \times 10^{-6} \mathrm{M}_{\text {sun }} \mathrm{yr}^{-1}$ but with considerable variability
- gas has 2 -phase structure: hot X -ray emitting gas \& cold filaments, which settle into a disk; slow winds create cold gas clumps which introduce the variability

Infrared and X-ray Flares

time after UT 0:0:0 on Apr 4, 2007 (minutes)
D. Porquet, G. Hasinger, priv. comm.

NACO (VLT) H-band, 40 mas resolution 1 min per image (Genzel et al. 2003)

What causes the Flares?

Infrared emission is caused by an increase of the non-thermal tail of highly relativistic electrons (synchrotron models) due to transient heating/acceleration; emission is strongly affected by doppler effect, beaming, lensing, etc...
orbiting hotspot: $\mathrm{t} \sim 17 \mathrm{~min}$
synchrotron emission:
$t \sim 8$ min $B_{30}{ }^{-3 / 2} \lambda_{2}^{1 / 2}$

Next Steps into the Galactic Center: GRAVITY

Periodicity within flare light-curve suggests matter on last stable orbit, believed to be a compact spot of hot gas emitting synchrotron radiation.

GRAVITY can probe General Relativity in the strong field limit by detecting motion of this gas around the black hole.
black: true orbit (80° inc.) red: observed primary image green: observed secondary image
blue: centroid (taking into account relative brightness, lensing, beaming, \& doppler effects)

By observing many flares, one can improve statistics of centroid measurements \& distinguish between different models

4. Nearby AGN

main references:
Davies, Mueller Sanchez, + (ApJ accepted)
Hicks, Davies, Mueller Sanchez, + (in prep)
> AGN at adaptive optics scales
> Black Hole Masses
> Obscuring Molecular Gas
> Nuclear Star Formation
> Feeding the Monster

AGN at Adaptive Optics Scales

What physical scales can we study with adaptive optics?			
examples	Distance 1"	50 mas	
NGC4945, Circinus, Cen A:	4Mpc 20pc	1 pc	
NGC1068, NGC3227, NGC1097	15Mpc	70 pc	4 pc
1 Zw 1	280Mpc 1.4 kpc	70 pc	

What structures exist on those scales?

- circumnuclear region of host galaxy
- narrow line region
- torus \& nuclear region of host galaxy
- broad line region
- black hole (sphere of influence)

NB: sizescales here are for a QSO

AGN at Adaptive Optics Scales

some open questions
$>$ black hole mass from stellar dynamics to test reverberation masses (BLR geometry) \& $M_{B H}-\sigma$ relation
$>$ distribution \& kinematics of molecular gas; relation to obscuring material (torus); fuelling the AGN
$>$ extent, intensity, \& history of recent star formation and relation to AGN (impact on fuelling \& feedback)
advantages of observing in the near infrared

- spatial resolution from AO (but not necessarily increased sensitivity)
- contrast against AGN
- reduced extinction wrt optical
- diagnostics for stars, ionised gas, \& molecular gas

Integral Field Spectroscopy

Two dimensional original on-sky image

- image slicing
- dispersion
- reconstruction into a datacube

1-8ํ)

5

Spectral dipersion of the sliced image

Spectrum of each 2D pixel

Computer reconstructed image

SINFONI results

Black Hole Masses

what measurements are possible \& how good are they?

- stellar proper motions only our Galaxy so far (but soon also M31?)
- reverberation mapping yielded most results
- masers
- gas dynamics
- stellar dynamics
accurate but applicable to few galaxies can be influenced by in/out flows
ideal if radius of influence of black hole resolved

BH radius of influence

$$
r_{h} \sim \frac{G M_{B H}}{\sigma^{2}} \sim 11.2\left(\frac{M_{B H}}{10^{8} M_{\text {sun }}}\right)\left(\frac{\sigma}{200 k m s^{-1}}\right)^{-2} p c
$$

but $\mathrm{M}-\sigma$ relation is

$$
M_{\text {BH }}=1.35 \times 10^{8}\left(\frac{\sigma}{200 \mathrm{kms}^{-1}}\right)^{4.02} M_{\text {sun }}
$$

so to zero order

$$
r_{h} \sim\left(\frac{M_{\text {BH }}}{10^{6} M_{\text {sun }}}\right)^{0.5} p c
$$

i.e. can resolve r_{h} in Seyfert
galaxies out to $\sim 20 \mathrm{Mpc}$

What do we need to measure?

stellar kinematics:

- velocity
- dispersion
- ideally also Gauss-Hermite terms h3 \& h4 (if noise permits)

stellar continuum

uncertainty (km / s)

Importance of 2D kinematics

data \& models from SAURON project

Schwarzschild (orbit superposition) modelling

Model

- start with a defined potential (for $\mathrm{M}_{\text {BH }}, M / L$ \& distribution)
- follow equations of motion to build up a library of orbits
- create linear (non-negative) combination of orbits
- must match luminosity profile
- X^{2} minimised wrt LOSVD

for NGC3227

Mass-to-Light ratios

- 'disk' system - from star formation constraints
- bulge - in range 10-30 $M_{\text {sun }}$ (Förster Schreiber et al. 2003)
- $M / L_{\text {disk }}, M / L_{\text {bulge, }}$ and $M_{B H}$ are varied independently to create a grid of models

Orbit Library

- 3300 library orbits in each direction (pro/retro-grade), sufficient for the LOSVDs, measured in 4 angular $\times 7$ radial bins in each quadrant)
- inclination fixed at 60°
- mass distribution based on luminosity distribution \& mass/light ratios of the 2 components

Results for $M_{B H}$ in NGC3227

best fitting parameters:
bulge M/L ‘disk' M/L M_{BH}
$27.5 \mathrm{M}_{\text {sun }} / L_{\text {sun }}$
$2.5 \mathrm{M}_{\text {sur }} / \mathrm{L}_{\text {sun }}$
$1.5 \times 10^{7} \mathrm{M}_{\text {sun }}$
from starburst modelling \& expectations
bulge M/L $25-35 \mathrm{M}_{\text {sun }} / \mathrm{L}_{\text {sun }}$ ‘disk' M/L
but doesn't include gas mass
consistency checks are important!

Obscuring Molecular Gas

What are the minimum criteria for the torus?

- consists of molecular gas (\& dust)
- compact, size tens of parsecs
- optically thick, so as to obscure AGN when viewed edge on
(column density at least $10^{22} \mathrm{~cm}^{-2}$)
- vertically extended, by several parsecs so as to provide collimation for ionisation cones

ionisation cone in Circinus is traced for $\sim 15 "=300 \mathrm{pc}$ (Marconi et al 94)
[OIII] (blue)
Ha \& [NII] (yellow)

Radial distribution of molecular gas

HWHM generally < 50pc

Column density of Molecular Gas

- estimate dynamical mass $\sim\left(\mathrm{V}^{2}+3 \sigma^{2}\right) \mathrm{R} / \mathrm{G}$
- assume gas fraction 10% (conservative)
- find column density $>10^{23} \mathrm{~cm}^{-2}$
- this already implies the gas is clumpy - so as not to obscure lines of sight to the bulk of the star formation

Scale height of Molecular Gas

- $\sigma_{\text {gas }} \sim 50-100 \mathrm{~km} / \mathrm{s}$ in centers of these AGN
- but 1-0S(1) emission strongest for shock speeds $20-50 \mathrm{~km} / \mathrm{s}$
- mm CO2-1 measurements of cold H2 also have large dispersions
- there are high dispersion 1-0S(1) lines in Orion: 'bullets'
- bulk cloud motions must account for $\sigma_{\text {gas }}$ in AGN
- distribution must be vertically extended

Nuclear Star Formation: correcting for dilution

It is possible to correct for dilution by AGN \& estimate stellar continuum without knowing anything about the stellar population

STARS stellar cluster models

$$
W_{\mathrm{CO6}-3} \sim 4.5 \AA \& W_{\mathrm{CO} 2-0} \sim 12 \AA
$$

adapted from Oliva et al. 1995
can also run Starburst99 version 5.1 models: http://www.stsci.edu/science/starburst99/

Nuclear Star Formation: estimating $\mathrm{L}_{\text {bol }}$

Estimating stellar bolometric luminosity is simple and robust

For the stellar continuum, it is possible to estimate $L_{\text {bol }}$ from L_{K} to within a factor of 3 without knowing anything about the star formation history

Nuclear Star Formation: size \& age

nuclear stellar continuum resolved in all cases
age is $10-300 \mathrm{Myr}$
but low $\mathrm{W}_{\text {Bry }}$ means star formation is no longer active

Cid Fernandes+ 04: central ~200pc of 79 nearby Seyfert 2s; 1/3-1/2 have experienced significant star formation in last few hundred Myr

Representative Stellar Cluster Model

STARS illustrative stellar cluster model: for recent star formation which is no longer active, the luminosity was of order 10 times higher in the past - could have been source of heating to create the large velocity dispersions now seen

normalisation set by $L_{\text {bol }}=2 \times 10^{9} \mathrm{~L}_{\text {sun }}$ at 100 Myr

Kennicutt Schmidt Law

Nuclear starbursts lie on the Kennicutt Schmidt law
$\Sigma_{\text {SFR }}=2.5 \times 10^{-4} \Sigma_{\text {gas }}{ }^{1.4}$
when SFR is time averaged and 30% of dynamical mass is attributed to gas.

SFR is high because the gas surface mass density is high. As a result the star forming efficiency is also high.

A hypothesis for episodal star formation

(but see also results from numerical modelling: poster by N.Kawakatu)
$>$ Gas accumulates in central 100pc
> Region cannot form stars due to high turbulence (Toomre criterion, $\mathrm{Q}=\sigma \mathrm{K} / \pi \mathrm{G} \Sigma$)
> Eventually, the high gas density leads to a high star formation rate
> Starburst is Eddington limited, generating a huge radiation pressure
> Because the efficiency is high, the starburst is short lived
> Starburst fades and is then dormant until gas is replenished
... but how is star formation related to the torus \& the AGN?

A star-forming torus in NGC1097

...but how is star formation related to the torus \& the AGN?

- distributions similar
- kinematics similar
- gas \& stars are mixed
- torus is forming stars

Star formation is probably inevitable and it will have a huge impact on the gas in the nuclear region

Nuclear Star Clusters in Circinus

Mueller Sanchez et al. 2006

Clumpy Star Forming Torus

warm dust in Circinus (Tristram, PhD thesis 2007)
needs clumpiness to reproduce VLTI fringe visibilities
size of clumpy dust emission from VLTI: radius ~ 0.1 " size of clumpy stellar structure from AO: radius ~ 0.2 " maybe this is dust heated by the stars

Stars \& Dust in NGC4945

Stars \& Dust in NGC4945

VLT LGSF commissioning results at a resolution of $\sim 2 p c$ show individual stars; massive star clusters are also visible

L-band shows warm dust emission \& traces same structures as the stars, even on larger scales confirmation that the dust is heated by stars rather than the AGN

Feeding the Monster: the role of stellar ejecta

OB stars significant mass loss, but at speeds of $\sim 1000 \mathrm{~km} / \mathrm{s}$ and only for a short time;
in Galactic Centre, winds are partially responsible for stopping accretion (Ozernoy+96,97, Cuadra+06)
supernovae
$\sim 10^{6} \mathrm{SNe}$, at $10-50 \mathrm{Myr}$, each ejecting $\sim 5 \mathrm{M}_{\text {sun }}$ at $\sim 5000 \mathrm{~km} / \mathrm{s}$; most likely outcome is a superwind rather than accretion

STARS representative

Feeding the Monster: the role of stellar ejecta

AGB stars stars of $1-8 \mathrm{M}_{\text {sun }}$ reach AGB phase after $\sim 50 \mathrm{Myr}$; winds have speeds of $10-30 \mathrm{~km} / \mathrm{s}$ and remain bound; mass available $>0.02 \mathrm{M}_{\text {sun }} / \mathrm{yr}$ over timescale of $50-200 \mathrm{Myr}$; total mass $\sim 2 \times 10^{7} \mathrm{M}_{\text {sun }}$ over 1 Gyr

STARS representative stellar cluster model

Bondi accretion

$$
\dot{M}_{B H}=\frac{2 \pi G^{2} M^{2} \rho}{V^{3}}
$$

if gas is provided by a stellar wind
$\rho_{\text {wind }}=\frac{\dot{M}_{\text {wind }}}{4 R^{2} V_{\text {wind }}}$
$\dot{M}_{B H} \propto V_{\text {wind }}{ }^{-4}$

5. Future Perspectives

AO has taken a long time to get going but is now standard at many observatories \& even laser guide stars are becoming common

Here we look at a few different examples of where AO/interferometry might take us a little bit further
> MCAO on Gemini South
> LINC-NIRVANA on the LBT
> MUSE on the VLT
> GRAVITY on the VLT
> E-ELT

MCAO on Gemini South

adaptive optics:

- MCAO: 5 LGS and 3 NGS to control 3DMs
- diffraction limited imaging in JHK (30-60mas, predicting 45-80\% strehl with variation of 2-6\% across the field
- sky coverage for $\mathrm{R}=19 \mathrm{mag}$ guide stars: 15% at galactic pole, to $>70 \%$ within 30° of galactic plane
- installation of LGS-MCAO in 2007 instruments:
- multi-object spectroscopy at up to R~3000 with Flamingos2
- imaging with 80 "x80" FoV sampled at 0.02 " imaging at $1-2.5$ um with GSAOI

LINC-NIRVANA on the LBT

- LBT has two 8.4 m mirrors with full diameter 23m, yields 10 mas in J band
- LINC-NIRVANA* is a $1-2.5 \mu \mathrm{~m}$ Fizeau interferometric beam combining imager which will use multiple natural guide stars to do MCAO
- SERPIL/LIINUS is a integral field spectroscopic upgrade

* Nirvana = "an ideal condition of
rest, harmony, or joy"

MUSE on the VLT

first light planned for 2012
3 modes:
seeing limited, wide field AO, narrow field AO
specs for Wide Field AO mode

Spectral range (simultaneous)	$0.465-0.93 \mu \mathrm{~m}$
Resolving power	$2000 @ 0.46 \mu \mathrm{~m}$
	$4000 @ 0.93 \mu \mathrm{~m}$

Wide Field Mode (WFM)

Field of view	$1 \times 1 \mathrm{arcmin}^{2}$
Spatial sampling	$0.2 \times 0.2 \mathrm{arcsec}^{2}$
Spatial resolution (FWHM)	$0.3-0.4 \mathrm{arcsec}$
Gain in ensquared energy within one pixel with respect to seeing	2
Condition of operation with $A O$	70%-ile
Sky coverage with $A O$	70% at Galactic Pole
Limiting magnitude in 80 h	$\mathrm{I}_{A B}=25.0(\mathrm{R}=3500)$
	$\mathrm{I}_{A B}=26.7(\mathrm{R}=180)$
Limiting Flux in 80 h	$3.910^{-19} \mathrm{erg} . \mathrm{s}^{-1} \cdot \mathrm{~cm}^{-2}$

24 detectors, each 4096^{2} giving 400 million pixels
adaptive optics, at optical wavelengths, with high sky coverage (multiple LGS)
very deep exposures

GRAVITY on the VLT

VLTI will enable us to measure the size of the BLR

resolution of 100 m baseline in K-band is $4 \mathrm{mas} \rightarrow$ BLR can never be resolved e.g. size of a BLR 3lightdays across at a distance of 10 Mpc is $60 \mu \mathrm{as}$

BLR in 3C273 is 390lightdays, which is 130μ as
suggestion of flattening in 10-20\% of BLRs \rightarrow rotational signature
velocity gradient can be measured using $10 \mu a s$ astrometry \& spectral capability, giving us

1. statistical estimate of fraction of BLRs with significant ordered rotation
2. measurement of size of BLR from velocity gradient
3. mass of central black hole (once inclination is known)
e.g. 3C273: red/blue channels (at $+/-300 \mathrm{~km} / \mathrm{s}$) will be 50μ as apart

Telescope Sizes

E-ELT

- merger of OWL \& Euro50
- 42-m primary, 9061.45 m segments
- ~800MEuro
- 5500 moving tons
- site not yet chosen
- 2006, Dec: ESO council approval for phase B (preliminary design)
- 2007, Oct: Technical Review
- 2009, Feb: System Review
- 2009, Oct: Construction Cost Review
- 2010: Construction begins
- 2017: Operations begin

E-ELT

Adaptive optics with laser guide stars will be 'standard' with many AO modes planned: SCAO, LTAO, MCAO, GLAO, MOAO, XAO

telescope	width	thickness	actuators
MMT	64 cm	2 mm	336
LBT	91 cm	1.6 mm	672
VLT	112 cm	1.9 mm	1170
ELT	250 cm		5000

AO will give: 10 mas resolution at $2 \mu \mathrm{~m}$; 6 mas at J -band $(1.25 \mu \mathrm{~m})$
AO is actually necessary - optics size:
focal ratio of camera

$$
f / \text { number }=\frac{206265 d_{p i x}}{D_{t e l} \theta_{p i x}}
$$

VLT instrument might have $\mathrm{f} / 2.5$; on ELT this would be $\mathrm{f} / 0.5$
size of spectrograph optics

$$
D_{\text {coll }}=\frac{R p \theta_{p i x} D_{\text {tel }}}{206265\left(2 \tan \theta_{B}\right)}
$$

for KMOS, $\mathrm{D}_{\text {coll }} \sim 5 \mathrm{~cm}$; LUCIFER, $\mathrm{D}_{\text {coll }} \sim 12 \mathrm{~cm}$
similar instrument for ELT, $D_{\text {coll }} \sim 30-50 \mathrm{~cm}$

Summary

> Adaptive Optics Concepts \& Techniques
> QSOs at High \& Low Redshift
> The Galactic Center

- density of stellar cluster
- orbits of stars
- flares from the last stable orbit
> Nearby AGN
- black hole masses
- nuclear star formation
- torus
> Future Perspectives
- exciting new technological developments in the next few years

