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Abstract

In this article I discuss methods and issues of interferometric data processing, i.e.
how to compute visibilities from interferograms, correct for systematic errors, and
calibrate the data. I conclude with some remarks on interferometric imaging, as it
can be considered part of data processing, one step before the analysis using physical
models of the target observed.

1 Introduction

The interferometer is a complex apparatus producing interferograms which
are sensitive to the degree of mutual coherence, 7, between the two beams it
combines. The major contributor to 7y is the Fourier transform of the brightness
distribution of the astronomical object itself (van Cittert-Zernike Theorem),
and it is our goal to extract this quantity, V', which is the complex visibility
of the object we want to study, from the interferograms.

However, there are numerous effects which degrade v, all related to what
happens to the light during its passage to the detector through the atmosphere
and the telescope optics. In general, degradation related to propagation is
calibrated by observing a suitable calibrator star (i.e. an unresolved target
nearby and of similar magnitude), and degradation related to the detector is
characterized using an incoherent mode of the interferometer.

The exact method used for visibility estimation, and knowledge of the spectral
bandpass over which the interferograms are averaged, is important for the
comparison of the measurements with visibilities from a model during the
astrophysical analysis.
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Fig. 1. Idealized white light interferogram (thin line), combining light from seven
individual channels. The fringe amplitude drops rapidly with distance from the
central white light fringe. Note the phase shift across the bandpass away from the
white light fringe.

2 Fringe detection and estimators

In order to measure the mututal coherence between the two beams, after
compensation of their optical path difference (OPD), relative phase offsets are
introduced which produce a pattern of light and dark bands, the so-called
fringes. An interferogram records the maximum and minimum levels of inten-
sity, and the visibility amplitude is defined as follows.

Imax - Imin
V=——"7-—1-—
Imax + Imin

If the two beams are incoherent, i.e. the coherence time over which there exists
a stable phase relationship between them is much smaller than the detector
integration time, the fringe contrast approaches zero. On the other hand, the
visibility amplitude can never be larger than unity, but should approach it
for unresolved targets in the absence of any degrading effects such as poor
seeing, poor optics, and wide bandwidth. An idealized interferogram is shown
in Fig. 1.

Relative phase offsets are introduced by either modulating the delay lines
if the beams are combined in the pupil plane, or by utilizing the geometric
optical path differences if the beams are combined in the image plane. There
are many interferometers using the former method, AMBER on the VLTT uses
the latter.

The visibility function is a complex one, and the phase of the visibility can
be extracted by defining a fiducial point of the modulation, and measuring
the distance of the nearest fringe peak from it in units of the wavelength,
multiplying by 27. The fringe phase is usually corrupted by the atmospheric
fringe motion, unless closure phases are computed.

In the following, I will discuss the three cases of fringes being tracked, usually
by detecting a single fringe, of fringe packets being scanned, in which case
they are centered, and finally, of interferograms which are imaged onto a two-
dimensional detector.



2.1 Fringe tracking

Let us proceed from the simple to the more complicated. In a Michelson in-
terferometer which modulates the delay in a sawtooth pattern, the photon
count rate can be measured in four equal sized phase bins (A, B, C, and D)
covering exactly one fringe at the wavelength of observation. Then it can be
shown that an unbiased estimator exists for the square visibility amplitude as
follows (Shao et al. , 1988).

< X?’4+Y2—-—N>
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=

where X = A —C and Y = B — D are the real and imaginary parts of
the Fourier transform of the bin counts, N = A+ B + C + D is the total
number of counts, and D is the back ground count rate (see Sec. 3). The
brackets denote an average, which is done for nominator and denominator
separately. This estimator is unbiased only if the detected photon events follow
a Poisson distribution, in which case the variance of the signal z, var(z) =
E(2?) — E(z)? = 7. Therefore, we show that the bias is exactly N as follows.

(
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(C* —2CA+ A%) + E(Y?)

(C*) —2E(CA) + E(A*) + E(Y?)
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As an example of squared visibilities computed this way for the Navy Proto-
type Optical Interferometer (NPOI), we show in Fig. 2 that at low amplitudes,
even negative (squared) values can exist. This is because the squared visibili-
ties are not the result of a mathematical operation to square a quantity, but
the result of Eq. 1 in which a negative result can be obtained if the bias cor-
rection (N) is slightly bigger than the term X2 + Y2, Therefore, a bias would
actually be introduced into the results if positivity of the squared visibilities
would be enforced.
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Fig. 2. Fringes and measurements of the squared visibility. On the left, photon count
rates as a function of bin phase and time are displayed in grey scale. In each vertical
strip, continued by its neighbor to the right, times runs from top to bottom (about
0.8 s), and the width of each strip is one fringe. The fringe tracker employed uses the
so-called group delay method, which allows for small systematic residual motion of
the fringes as compared to a phase tracking interferometer, where the interferogram
is stabilized within the limits of phase noise, albeit at a loss of sensitivity. On
the right, showing squared visibility amplitudes, each data point corresponds to
an average of 1s. The error bars were computed as errors of the mean based on
Gaussian error propagation. Note that there are negative values, of which some are
outliers, others are normal statistical fluctuations.

2.2  Fringe scanning

For interferometers without tracking capability, the delay has to be modulated
with a larger amplitude to sweep the whole fringe packet across the detector
in order to center its peak envelope. Each scan is truncated in post-processing
(to exclude the parts not containing fringes) and the power spectral density
(PSD) is computed (Fig. 3).

The PSD will peak at the nominal fringe frequency (which is equal to the cen-
ter wavelength divided by scanning speed) with some power spread around this
peak due to atmospherically induced piston (i.e. residuals of the OPD) vari-
ations during the longer sweep time, as compared to the single-fringe sweep.
Because of this, the PSD is integrated under the peak, rather than just reading
off the peak power value. The (square of the) correlated flux thus measured is
normalized by the total uncorrelated flux to produce a visibility amplitude, un-
less the PSD was computed from already normalized interferograms (Kervella
et al. , 2004).
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Fig. 3. On the left, a so-called “waterfall” display shows intensity variation as a
function of the sweep through the fringe packet (z-axis: OPD), and as a function
of time which runs from top to bottom. On the right, the power spectral density of
fringes is shown. The fringe signal shows up at the nominal fringe frequency (about
400 Hz), while the tilted baseline is related to the photon noise bias. This bias can
be measured by positioning the sweep away from the fringe packet, or just fitting a
baseline. The PSD is due to Perrin (2003).

2.8  Fringe modelling

An alternative to the Fourier transform, a model of a fringe can be fit to
the actual detector data. This approach is used to extract visibilites from
the detector of AMBER, which records 2-dimensional interferograms (spatial
versus wavelength space), as shown in Fig 4.

3 Noise sources and visibility bias

Astronomical observations are often carried out at the limit of the equipment
sensitivity, and, in the case of interferometers, fringe contrast. The signal to
noise ratio of the measurements is a function of both the number of detected
photons and the visibility amplitude, therefore one can end up in a regime
called “photon starved interferometry” even if the flux is high, but because
the visibility is very low. In this regime, photon and detector noise statistics
play a very important role.

The detector noise includes read noise (as well as a bias offset in the optical)
and dark current. Shot noise, which is produced by the incident photons and
which usually follows Poisson statistics, will be discussed here by its effect
of causing a variable bias in the measured visibilities. Finally, background
photons are an important noise source in the mid-infrared.



Fig. 4. The figure shows at the top the AMBER detector areas illuminated by two
photometric channels, and the interferometric channel (artificial light source, with
one of the three beam shutters closed; the third photometric channel would be to
the right of the interferometric channel). The dispersion direction is vertical. Fringes
are clearly visible and slightly tilted due to an internal OPD offset. Below the image,
three panels show the so-called “carrier waves” (i.e. basis functions) corresponding
to the three possible spatially encoded fringe patterns (hence their different spatial
frequency). Each panel shows a pair of carrier waves 90° apart, corresponding to
the sin and cos components of the complex visibility (one wavelength shown only).
The fringe model consists of the coeflicients of a fit of the carrier waves to the fringe
patterns produced by different beam shutter settings. Visibilities of real fringes can
then be extracted by multiplying the so-called P2VM coefficient matrix with the
pixel intensities of the (cosmetically and DC offset corrected) interferograms.



Even though the noise sources we consider are zero-mean random variables,
the visibility is computed as the square modulus so that we may average it
in the presence of phase fluctuations caused by the atmosphere. That process
converts every noise source into a visibility bias.

3.1 Detector noise

Interferometers typically employ very short integration times (on the order of
milliseconds) due to the rapid fringe motion. Read noise, which is a signal-
independent noise source added to each read of the detector, is therefore im-
portant if CCDs or infrared array detectors are used, while avalanche photo
diodes for example do not add read noise. It is typically on the order of a few
to ten electrons per pixel read.

If an external fringe tracker allows longer integration times (on the order of
seconds), the dark current of IR array detectors has to be measured as well
and subtracted from each frame.

3.2  Background

In the mid-infrared, due to the fact that the temperature of a black body
radiating predominantly in that wavelength band is comparable to the tem-
perature of the telescope and beam train structure as well as the atmosphere
(the detector being cooled), most (on the order of 98%) of the photons received
are actually due to background.

3.3 Shot noise

We have already discussed the most simple case of measuring the fringe by
counting photons in four equal sized phase bins, assuming Poisson shot noise
statistics. Such a case was realized by the Mark III stellar interferometer using
photo multiplier tubes, and for the SNR of the squared visibility we have
SNR ~ NV?if NV? > 1, and SNR ~ v/NV if NV? < 1 (e.g. Shao et al.
(1988)). The unbiased measurement of visibilities even very close to the null
of a resolved stellar disk is shown in Fig.5 (Quirrenbach et al. , 1996).
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Fig. 5. Measurements of the visibility of a resolved star near the null. Very good
bias correction is essential in this measurement.

3.4  Measuring the bias

The total bias is equal to the sum of the variances of each noise source. The
latter could be estimated (e.g. in the case of Poisson shot noise), or simply
measured as the squared visibility amplitude when the correlated signal is zero
(e.g. when offsetting the delay lines from the zero OPD position). Measuring
the bias is usually needed because the variances of the noise sources are not
easily estimated, and they depend on the target flux. As an example, Fig 6
shows the (squared) visibility amplitudes measured on an incoherent signal.

3.5 Scintillation

If the height of the dominant turbulence layer of the atmosphere is larger
than the Fresnel propagation length dp = /), the geometric approximation
of light propagation is no longer valid and intensity fluctuations will be caused
at each telescope in addition to the phase fluctuations. Here 7y is the Fried
parameter (i.e. the seeing), and A the observing wavelength (see, e.g., Quirren-
bach (2000)). Unequal intensities of the interfering beams, I; and I, would
decrease the measured visibility by a factor «/I1I5/(I; + I5). This is shown in
the following.

Assume two fully coherent (7 = 1) monochromatic (wavelength \) beams A
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Fig. 6. Measurement of the NPOI visibility bias (in four spectral channels) as func-
tion of the photon count rate. Stars of different magnitude have been observed
by offsetting the delay lines in order to de-correlate the beams (expected visibility
amplitude zero). The bias in each channel (i.e. the measured non-zero visibility am-
plitude) follows a linear relationship in a log-log plot. Compare the bias levels to
the scale in Fig. 5

and B of light with electrical field amplitudes of A5 and Ag. If interferred, their
electric field vectors will add, and the total amplitude will vary, as a function
of OPD, between A + Ag and Ax — Ag. Since intensity of light is the square
of the electric field vectors integrated over a time interval, it will vary between
™3 = A% + 24, Ag + A% and I™® = A3 — 24, Ag + A%. Therefore, using the
definition of the visibility amplitude as V = (I™ax — [min) /([max 4 [min) the
maximum visibility of two interfering beams of intensities I, and Ig will be

VAT
Vmax =9 A‘B

I

This visibility will of course be less if the beams are only partially coherent
(v < 1), and the bandwidth of the light is wide.

Scintillation can also be induced by the fluctuating injection of light into a
single mode fiber (FLUOR, VINCI, AMBER). Interferometers which do not
employ photometric channels in order to calibrate the beam intensity imbal-
ance, can still mostly cancel the effect of scintillation by integrating longer
than its typical time scale. It can be shown as follows (D. Mozurkewich, priv.
comm.) that because the nominator and denominator of Eq.1 are averaged
separately, the intensity ratio fluctuations will not affect the average visibility.

The numerator of Eq. 1 averages to < N2?V? > where N = I, + I, and
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Fig. 7. Scintillation manifesting itself as scatter of the photon count rate larger than
the theoretical error bars. The data shown are the number of photons counted by
NPOI in a specific spectral channel during a 2 ms interval, averaged over a 1 s
interval. The visibility amplitude computed from these data is shown in Fig. 2, and
is unaffected by the scintillation.

V = 2Vo/IL I,/ (I, + I,) with V; the true visibility. Therefore, the mean value
of the numerator becomes 4 < I} >< I, >< V, >2if I, and I, are independent.
Thus, only the mean beam intensity ratio causes a reduction in V', but not
fluctuations of the mean ratio.

3.6 Observational limits

The limits of observability of targets are of course established by estimating
the SNR of the visibility given an integration time. In general, this relation-
ship has not been established yet for the VLTI instruments, but as a proxy
the correlated flux can be used to set the limit. In the case that the noise is
dominated by a source independent of the signal, e.g. by background in the
mid-infrared or by read noise in the NIR, the SNR is proprtional to the cor-
related flux, NV. Only in the optical, using detectors without read-out noise
(e.g. APDs), the SNR of the squared visibility is proportional to NV?2.

10



15 ' ' g
__10r ) i
= | i
o L ]
Z
m - .

5_ s —

0 5 10 15

NV?2

Fig. 8. Squared visibility SNR versus NV2. The curve corresponds to the theoretical
expectation, while the symbols denote the results of a numerical simulation.

4 Advanced techniques

In this section we discuss ways of dealing with some of the limitations set by
the atmosphere, be it the short coherence time, the small Fried parameter, or
the mid-infrared background.

4.1 Coherent integration and bootstrapping

If the SNR of a single measurement of the squared visibility is less than unity,
averaging M samples only increases the SNR by /M. However, if one is able
to coadd several frames to increase the number of photons N detected in a
single coherent average, the SNR increases proportional to N. This is shown
in the following equation (Shao et al. , 1988), see Fig. 8.

—-1/2

1 1
SNR(V?) = { M/2NV? [1 + 5NVZ]

The process of coadding frames is called coherent integration, but requires of
course (if done offline) the removal of the atmospheric phase disturbances. A
method applied to data of the NPOI has been described in detail by Hummel
(2002); another one has been implemented in the EWS data reduction software

11
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Fig. 9. The residual group delay, after fringe tracking with NPOI (at an effective
wavelength of 700 nm).

for MIDI. The general principle is to implement offline fringe phase tracking
by which the visibility phasors can be aligned before coadding them (typically
a few hundred ms at a time), resulting in an averaged complex visibility. If
their SNR is larger than unity, an incoherent average using Eq. 1 is adequate
to compute the final squared visibilities. The closure phase would be computed
from the vector averaged triple product of the coherent complex visibilities.

Unless the interferometer is equipped with a fringe phase tracker (e.g. FINITO
on the VLTI), in which case the coadding can be done in real-time by just
increasing the integration time of the interferograms, the deviation of the
instantaneous OPD from the OPD of the white light fringe has to be measured
for each frame. If the fringes are dispersed, the derivative of the visibility phase
with wavenumber determines the offset, and the white light fringe is defined
to have a zero derivative. Figure 9 shows an example.

When the complex visibility is multiplied by e?™#* where d is the group delay
and A the wavelength of the channel, the resulting visibility phases are not
random anymore, as shown in Fig. 10. However, there is still a systematic
variation, and it is shown in the same figure that the phases correlate with the
delay residual from the geometrical prediction (piston). The reason for this
is that the group delay is more a measure of the position of the peak of the
fringe packet envelope, while the different amount of air in the path above
each telescope has not only caused a delay difference, but also, due to air
dispersion, different phase curvature over the bandpass and therefore slightly
different fringe phases with respect to the envelope peak. This is demonstrated

12



oup delay corr.

Phase after gr

57 "'é R
7
2 1
O
g= 0
e
-2
-3
O 20 40 60 80
Do | | —
o 10F E
£ sk E
> O; :
O E 1
5 75 ]
0 —10F =
[ N } N L 4
L
O 20 40 60 30

Time — 08h 41m 53.0s [s]

Fig. 10. Top: The visibility phase of the white light fringe (700 nm) after group
delay tracking, as a function of time in seconds. Bottom: the residual delay on the
same time scale, showing a very good correlation with the phase.
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Fig. 11. The effect of air dispersion on the group delay phase(Meisner , 2004). The
white light interferogram at the top is the sum of all monochromatic interferograms
shown below it. A certain amount of wet air has been introduced and one can see
that the peak of the fringe envelope does not coincide with a fringe peak. That
difference is called the group delay phase.

in Fig. 11(Meisner , 2004).
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Fig. 12. Left: fringe delay of one of the baselines in a triangle; right: closure fringe
delay. Note how all systematic variations have disappeared.

The correction can be derived as follows. The group delay phase is

27 27
by=—An— —d
d A n A ;

where A is the path length difference (between the two beams) through air,

n is the refractive index (wavelength dependent), and d is the group delay

(including the portion compensated by the delay line). If the refractive index

is written as (in good approximation)
a
n=ny —+ -

)\7

with a a constant, then the group delay is equal to Any. Thus, the group delay
phase can be rewritten as

21 a
by = ——d.
d A2 Mo
The delay of the white light fringe, the so-called fringe delay, which would have

been realized by a real-time phase tracker, can be computed by integrating
the group delay phase normalized by the wavelength over the bandpass.

The full power of coherent integration is realized in situations where the fringe
delay on a baseline with low SNR can be estimated from the delay on the other
two, usually shorter, baselines with which a triangle of baselines is formed.
That technique is called baseline bootstrapping and is based on the fact that
the sum of the fringe delay on all baselines of a triangle is zero (Fig. 12). As

an example, Fig. 13 shows the improvement in the squared visibility on the
long bootstrapped E-W baseline of NPOI, in the C-E-W triangle.

Another advantage of coherent integration is that the term X2 + Y? in Eq. 1

will dominate N as more photons are detected, decreasing the magnitude of
the bias (see this in Fig. 6).

14
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Fig. 13. Squared visibility amplitudes, without (left) and with (right) coherent inte-
gration. The coherent integration time was 200 ms, and the incoherent integration
was done over a 1 second interval.

4.2 Wavefront filtering

The dependence of the quality of the fringe measurements goes beyond just the
atmospheric coherence time, but also includes the Fried parameter r, i.e. the
typical size of a seeing cell over which the phase of the wavefront does not vary
by more than one radian. As is well known, telescopes with an aperture larger
than rq do not produce an Airy pattern in their focus but rather a speckle
pattern, and if used in an interferometer, the visibility will be badly affected by
changes in r. That is because the individual speckles are mutually incoherent.
The number of speckles can be reduced by using adaptive optics. Even then,
an elegant method to select just the light which contributes to the coherent
flux was invented by Coude du Foresto et al. (1997), and makes use of fibers
which transmit only a single mode of light. In other words, at the output
of such a fiber, a near perfect Gaussian profile wavefront is made available
for beam combination. The seeing fluctuations are instead transformed into
flux variations (induced scintillation), which, if some light is picked off from
the single mode fiber via a coupler, can be used to accurately normalize the
interferograms.

Even if just used after the beam combiner (without the possibility to measure
the photometric variations) as in the Palomar Testbed Interferometer (PTTI,
Colavita (1999)), a significant improvement of the visibilities can be produced,
and for the reasons discussed above, only the average intensity ratio between
the two arms needs to be corrected for (Shaklan et al. , 1992).

The principle of the normalization of the interferograms can be outlined as
follows (see Kervella et al. (2004)). First, the coefficients of the so-called &
matrix relating intensities on the output side of the beam combiner (/; ) with

15
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Fig. 14. Raw interferometric signals I; and I3, as well as simultaneous photomet-
ric signals Py and Pg The curves fitted to the photometry are the result of the
application of a Wiener filter.

the input intensities (Pa ) need to be determined. Then we have

I = ki APs + ki gPs

Iy = Ko APA + Ko g Pg.

As one can see in Fig 14, a good fraction of the fluctuating interferometric
signal is due to the fluctuations in the coupling efficiency into the fiber, ex-
pressed in the intensities in the photometric channels P, and Pg. They can
optionally be smoothed using a Wiener filter. Then the normalization of the
interferometric signals I; and I, is performed as follows.

1 I, — k1 AP — k18 PB

I ca =
2J/FiAFE < /Py Palwiener

1 Iy — ko APA — Ko Pp

IQ cal =
2 \% k2,Ak2,B < \/ PAPB]Wiener

The resulting signals are shown in Fig 15; they still show some residual back-
ground fluctuation, which, however, correlates quite well between the two in-
terferometric outputs and thus can be eliminated by subtracting one from the
other.

16
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4.8 Mid-infrared background elimination

Interferometry in the mid-infared with VLTI/MIDI is at the forefront of tech-
nology due to the difficulties of dealing with the background emission. For
a long time, only one other interferometer, ISI, has been able to produce
science-grade visibilities in this regime, but due to the detection method, us-
ing heterodyne radio techniques, the sensitivity is very limited. Now, also the
Keck Interferometer has obtained scientific results in the mid-infrared.

Aside from the obvious cooling of detector and beam combination optics, the
proper transfer of the telescope pupil onto the entrance window of MIDI and
the subtraction of the two beam combiner outputs help to eliminate most of
the background fluctuations. This is because the background fluctuations are
highly correlated between the beam combiner outputs, while the relative fringe
phase is 180 degrees. In order to acquire the targets, standard on-source/off-
source chopping techniques are used to remove the background.

The intensity of light in the two interferometric channels of MIDI can be
written as (here for I; only)

I = Ing + Ig g + (1/2) (I — ™) sin(2rOPD/\)

where (1/2)(I™® — I™n)  the intensity variation due to interference, is equal
to 24/Ix1181V. Due to the beam splitter, Iy = ki ala, where I is the
intensity in the photometric channel A, and so forth, defining the coefficients
of the so-called xk-matrix.

An interferogram, i.e. the intensity as a function of OPD of a single scan
across the fringe packet free from background variations, is derived as men-
tioned above by computing I; — I. The background will be greatly reduced
to Ia(K1,a — Ko,a + (k1B — Ko,8)) Where « is the ratio of the beam intensi-
ties from the two telescopes. The fringe signals, however, will add, to become

oV \[Ia1Ins + 2V \[Ix 115,

17



The correlated flux derived from the interferogram /1 — I has to be normalized
by the total flux, and for that purpose, MIDI takes two photometric exposures

(HIGH_SENS mode), one with shutter A open, the other with shutter B. The
resulting spectra Iag 12 can be used directly to compute the normalization

factor \/IAJIBJ + \/IA’QIB,Q, by which the correlated flux, computed from the
interferogram I; — I, has to be divided.

With MIDI, the beam combiner can be changed to one where simultaneous
photometric channels are recorded (SCI_.PHOT mode), and it is only necessary
to determine the coefficients of the k-matrix on any bright target to compute
the coefficients of the k-matrix, as follows: k1 a4 = I1/([1 + 12), koa = Lo/ (1 +
I,), and so forth. (Therefore, it does not matter whether the photometry
exposures are done using the HIGH_SENS or SCI_.PHOT beam combiners.)
The k-matrix coefficients can then be used to compute the Ixp ;o from the
spectra Pa p determined from the photometric channels. The advantages of
this mode include the simultaneity of fringe and photometric exposures (while
chopping), and elimination of any beam overlap changes between fringe and
photometric exposures taken at different times.

5 Calibration and error estimates

Due to the dependency of the performance of an interferometer on the am-
bient and atmospheric conditions, the observations for the calibration of the
scientific data have to be performed near simultaneously with the latter. Stars
with a known diameter or a diameter small enough to be irrelevant are ob-
served, and the resulting visibility amplitude is known as the transfer function,
system visibility, or interferometric efficiency of the interferometer. Normally,
the visibility amplitude measured on a science target would be divided by the
amplitude measured for the calibrator in order to derive a calibrated visibility.

However, it is educational to keep in mind that an approach far better would
be to characterize the dependency of the transfer function on the seeing (or
other atmospheric and instrumental properties), and then to transfer that
parametrization to the science target. This has only worked routinely with
one interferometer, namely the Mark III Stellar Interferometer, which used 5
cm apertures and therefore was never used in the multi-speckle mode (Fig. 17).
That interferometer apparently also had the least instrumental effects on the
visibility, since the seeing calibration was often the only one needed.

If, during a night, several calibrators have been observed with the same instru-
mental setup, comparison between them will indicate the quality of the night,
and will also give a conservative estimate of the calibration error. However,
it is still advisable to not use an average transfer function for calibration but
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Fig. 16. Reduction of MIDI data taken with the SCI.PHOT beam combiner and
simultaneous fringe centering and chopping. Display of the XMDV GUI of the MIA
software (http://www.strw.leidenuniv.nl/~nevec/MIDI/index.html) showing in the
top panel the OPD modulation, then the signals of the two interferometric channels,
then the difference between the two revealing the interferograms, and finally, the
visibility amplitudes derived from each interferogram. Note that this target, o Orio-
nis, is bright enough to produce a noticable step in the total background dominated
signal while chopping.
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TIME(HOURS) PHASE AUTOCORRELATION, 4 MS LAG

Fig. 17. Left: calibrator visibilities measured in a particular night with the Mark
IIT interferometer. Right: the correlation of the visibility with a seeing index. All
calibrators are consistent with the same parameterization, indicated by the fit.

rather the calibrator foreseen for the particular science target, due to changing
conditions and the better match in brightness (we presume).
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Fig. 18. Dependence of MIDI visibility on seeing, and the correlation between rg
and the RMS of the delay.

6 Interferometric imaging

From a model fitting point of view, interferometric imaging amounts to no
more than fitting a number of pixel intensities to the visibility data, whereby
the only constraint on the model is the positivity of the pixels. This process
is based on the fact that the complex visibility function is the Fourier trans-
form of the object brightness distribution (van Cittert-Zernike theorem). It is
immediately obvious that due to the typically much larger number of pixels
compared to a few model parameters, the amount of data needed to make
this process converge to a reasonably well constrained solution is rather large.
However, since it is the stated ultimate purpose of interferometers to syn-
thesize a larger aperture, imaging has become the standard product of radio
interferometers. In the optical, imaging is still the exception, due to the very
sparse arrays and limited observing time.

Since the visibility phases in the radio suffer, just as in the optical, from
random fluctuation due to the propagation through the ionosphere and atmo-
sphere, methods to self-calibrate the phase data had been developed already
quite some time ago. Because the closure phase is not corrupted by the atmo-
sphere, one can simply go through all independent triangles, assign the closure
phase to one of its baselines not set before (if any, and subtracting the sum
of the phases already assigned to the other two baselines) and thus store all
known phase information in the n(n — 1)/2 baselines, preserving the closure
relations.

Then, in an iterative manner, the missing phase information is replaced by
phases predicted by the model, and since the model is improved in each itera-
tion, so is the model prediction, eventually the predicted phase are no different
than what would have been measured. The model is improved in each iteration
by using an algorithm deconvolving the Fourier transform of the hybrid data
set from the “dirty” PSF synthesized by the uwv-coverage, ideally placing flux
only into those pixels of the deconvolved image where real flux is indicated.
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Fig. 19. Hybrid mapping scheme. SELFCAL adjusts station based phase terms to
match model and observed data, which is Fourier transformed to yield the “dirty”
map (DMAP). CLEAN devonvolves DMAP from the synthesized PSF to yield a
“clean” (CMAP) and residual map (RMAP). CMAP delivers the updated model
visiblities via a direct Fourier transform. After a few iterations, RMAP and CMAP
are combined for the final map (FMAP).

Taking, for example, the CLEAN algorithm, the correlation of the dirty image
with the dirty PSF is computed, whose maximum will always coincide with a
pixel containing some fraction of real flux.

This process converges if the source structure is sufficiently simple, and since
real flux, when removed from the model for purposes of testing the reality
of certain features, will return after a few iterations, some confidence can
be obtained on the structures mapped. Synthesis imaging in the radio is de-
scribed in more detail by Perley et al. (1989). The algorithms are partly
applicable also to optical interferometry data, however, the use of squared vis-
ibility amplitudes and closure phase make dedicated imaging software more
desirable, and a first package has been released to the community (BSMEM:
http:/ /www.mrao.cam.ac.uk/research/OAS /bsmem.himl).

An interesting problem arises if one tries to combine the data of all channels
in an interferometer dispersing the light in order to improve the usually very
sparse uv coverage. That is because of the likely dependence of the target
structure on wavelength. If that dependence can be parameterized easily, e.g.
with the effective temperature in applications involving normal stars, it may
be assigned as an additional property of the CLEAN component and then
taken into account when computing the model visibilities. For that purpose,
a modified version of the mapping process called Difference Mapping can be
employed which allows for a more rapid update of the corrected data.
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Difference mapping
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Fig. 20. Difference mapping scheme: the model components are accumulated over
several full iterations, each time performing CLEAN on the residual map only, i.e.
the difference between the Fourier transform of all data and the transform of the
current model.
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