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Abstract

I review the basic physical processes that determine the evolution of accretion discs. I first introduce the main

properties of discs observed around young stars across the mass spectrum. I then turn to the analysis of the fundamental

disc equations, highlighting several subtleties, in some cases rarely discussed in textbooks. I then discuss some classic

accretion disc solutions, both steady state and time dependent. I emphasise the description of the outbursting FU

Orionis objects, the class of protostellar objects best suited to investigating the accretion process. I discuss in some

detail the possible physical mechanisms responsible for transport in accretion discs, with particular emphasis on

gravitational instabilities, which are rarely discussed in this context.

1. Introduction

Disc-like or flattened geometries are very common
in astrophysics, from the large scale of spiral galaxies
down to the small scales of Saturn’s rings. In both of
these examples, the system is either collisionless (in
the case of spiral galaxies) or particulate (for Sat-
urn’s rings) and cannot be simply described in terms
of hydrodynamics. In the last thirty years increas-
ing attention has been given to fluid discs, where the
dynamically active component is gaseous. Here, dis-
sipative effects, associated with friction or viscosity
(a word that will recur very often throughout this
Chapter), can significantly alter the dynamics of the
disc. Through dissipative effects the fluid elements
of the disc can lose their energy or, more fundamen-
tally, their angular momentum, as I describe in more
detail below, and can fall towards the bottom of the
potential well, hence accreting on to a central grav-
itating body. Such a system, where a disc feeds a
central object through accretion under the effect of
viscous forces, is called an accretion disc.

Young stars are often surrounded by circumstellar
discs, with a very wide range of size, mass, tempera-
ture, lifetime, and composition. Each of these prop-
erties is a function of stellar mass and evolutionary

stage. Even within a given specific system quantities
such as the disc temperature can differ by orders of
magnitude between the inner hotter parts of the disc
and the outer, colder ones. I give a brief account of
the main properties of discs around young stars in
Section 3 below.

Circumstellar discs are an essential component in
the context of star formation. First, they play an
important dynamical role, since it is through the
disc that the central young star accretes most of its
mass. As discussed below, the angular momentum
of a molecular cloud core, where stars are born, is
orders of magnitude larger than the angular momen-
tum of a star. To form the star, one needs to find
a way to remove the excess angular momentum and
let the matter fall into the centre. An accretion disc
provides just the mechanism to accomplish this.

A second very important role played by circum-
stellar discs is as the site of planet formation. This
idea is centuries old, and dates back from the argu-
ments by Kant and Laplace, who noted that all the
planets of our own Solar System are almost copla-
nar and orbit the Sun in the same direction, thus
suggesting a common origin within a rotating disc.
Events in the disc, such as processing of various
gaseous species and the growth of dust grains, there-
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fore play an important chemical role. A detailed de-
scription of the issues related to planetary formation
is provided in the Chapters by Alexander and Klahr
within this volume.

The focus of this Chapter is on the basic dynam-
ics of accretion discs. This is an essential first step
needed to embark on the discussion of the more com-
plex phenomena associated with planet formation
and also to understand and make sense of the ob-
servations that will become available in the future
at progressively higher angular resolution. Several
excellent reviews and textbooks have been written
over the years on the dynamics of accretion discs.
The basic physical principles underlying the evolu-
tion of such systems have been described in Pringle
(1981) and in Frank et al. (2002). A comprehensive
review of the importance and of the dynamics of
discs around young stars is provided by Hartmann
(1998), while planet formation has been recently re-
viewed by Armitage (2007). A thorough description
of the transport properties of discs, and of the mag-
netohydrodynamics (MHD) instabilities responsible
for them has been recently provided by Balbus and
Hawley (1998) and Balbus (2003).

These references provide an extensive background
on the subject. Here, I will provide a step-by-step
approach to the subject, from a theoretical perspec-
tive. I introduce the main disc properties in Sec-
tion 3 and derive in Section 4 the basic equations
that determine the disc evolution from first princi-
ples (i.e., from the Navier-Stokes equations, describ-
ing the motion of a viscous fluid). In Section 5 I dis-
cuss the energetics of accretion discs. After a brief
description of the most important timescales deter-
mining the disc evolution (Section 6), I discuss in
some detail FU Orionis objects and the possible in-
stabilities that determine their outbursts (Section
7). Finally, I discuss the major issue in accretion
disc physics, that is, what process is ultimately re-
sponsible for accretion and dissipation, or, in other
words, what determines the disc viscosity (Section
8). This is commonly attributed to the development
of magnetohydrodynamical instabilities, which are
treated in more detail in the Chapter by Ferreira in
this volume. However, as discussed below, circum-
stellar discs may be too cold for MHD instabilities
to operate and we may have to resort to other pro-
cesses, such as gravitational instabilities. This lat-
ter topic is more rarely discussed and reviewed (and
only in the context of the so-called disc fragmenta-
tion scenario for planet formation, see Durisen et al.
2007), so I will spend some time discussing it (Sec-

Fig. 1. Snapshot of a numerical Smoothed Particles Hydro-
dynamics simulation of the formation of a stellar cluster. A
few protostars are visible as bright spots in the image, while
the colour scale indicates gas density. A large disc is visi-
ble on the bottom right corner, while another smaller one is
forming above it. Image from M. Bate.

tion 8.7). Finally, I finish by pointing out some of
the interesting new directions still worth exploring
in the theoretical understanding of disc evolution.

2. Why discs?

The formation of discs is related to the angu-
lar momentum content of the molecular cloud core
within which stars form. Without rotation, the gas
in the core could in principle freely collapse towards
the centre, forming a relatively compact protostar.
However, even a small amount of angular momen-
tum prevents such radial collapse, allowing the gas
to sink down only to a minimum distance from the
centre. Observations of molecular cloud cores typi-
cally yield angular velocities of the order of Ωcore ≈
10−14−10−13sec−1. However we cannot simply take
these values to represent angular velocities in the
disc. Angular momentum conservation forces the gas
to rotate faster as it collapses. So, what is the typi-
cal angular momentum per unit mass of a molecular
cloud core? A simple estimate of a molecular cloud
core mass can be obtained by asking what is the mass
for which thermal pressure is just enough to counter-
balance gravity and prevent collapse. Equivalently,
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we can ask what is the maximum size λJ for which
the sound crossing time tsc ∼ λJ/cs is comparable
to the free-fall timescale tff ∼ (Gρ)−1/2, where ρ is
the gas density. This typical lengthscale is called the
“Jeans length” and its exact definition is:

λJ =
2πcs√
4πGρ

. (1)

The mass associated with this lengthscale is called
the “Jeans mass” and is given by:

MJ = ρλ3
J ∼ π3/2

G3/2

c3
s

ρ1/2
. (2)

The isothermal sound speed for the gas is related
to the temperature by c2

s = kT/µmp, where mp is
the proton mass and µ ≈ 2.3 is the mean molecu-
lar weight. For a typical temperature T ≈ 10K for
molecular cloud cores, we find that a core whose
Jeans mass is of the order of one solar mass, MJ ≈
M⊙, has a Jeans length of order 0.1 pc. Interestingly,
this is just about the observed size of typical molec-
ular cloud cores (McKee & Ostriker, 2007). The spe-
cific angular momentum of the gas in the core can
therefore be estimated through:

j ≈ Ωcoreλ
2
J ≈ 1021 − 1022cm2/sec, (3)

Fluid elements falling towards the centre will ini-
tially be in eccentric orbits around the central pro-
tostar, but rapidly lose energy through shocks and
dissipation and settle down in the minimum energy
orbit for a given angular momentum, i.e. a circular
orbit. We can ask at what distance from the star the
gas will be in centrifugal equilibrium. Thus we match
the specific angular momentum of the infalling ma-
terial to that appropriate for a Keplerian orbit, i.e.

jK =
√

GMR, (4)

at a distance R from a star of mass M . We see that
the gas adopts Keplerian orbits around the protostar
at a distance

Rdisc =
j2

GM
≈ 102 − 104AU, (5)

where we assumed M ≈ 1M⊙ and estimated j from
equation (3) above. This is clearly much larger than
the size of a star, so the gas needs to redistribute
the angular momentum in order to accrete further
to the centre.

To summarize, we have seen that the collapse of
a rotating gaseous cloud leads to the formation of
a flattened structure (a disc) of typical size Rdisc &

102 AU. Once landed on the disc, in order to fur-
ther accrete onto the forming protostar, the gas has
then to find a way to get rid of its angular momen-
tum. The way to accomplish that is provided by the
accretion disc.

In reality, the dynamics that leads to the forma-
tion of a stellar cluster can be much more complex
than the simple picture for the formation of an iso-
lated star described above, as shown by the simula-
tions performed by Bate et al. (2003) (see Fig. 1),
which include the important effects of dynamical in-
teractions between the forming stars and the pos-
sibility of binary formation. Additionally, the pres-
ence of magnetic fields can also affect the process of
star formation (Machida et al., 2004; Price & Bate,
2007). Even in this more complex environment, how-
ever, the basic physics described above (which is es-
sentially based on angular momentum conservation)
still work. Circumstellar discs are the natural out-
come also in this case.

3. Main properties of circumstellar discs

Circumstellar discs are found around stars of very
different mass, from brown dwarfs (with stellar mass
M < 0.08M⊙) up to massive stars (with stellar mass
M > 8M⊙). This is reflected in the large range of ob-
served disc properties, which generally span several
orders of magnitude and are a function of both stel-
lar mass and evolutionary stage. In general, the most
detailed information available is for discs around
young solar mass objects.

Typically young stellar objects are classified ac-
cording to their infrared spectral energy distribution
(Lada and Wilking, 1984), and this classification
is usually interpreted as an evolutionary sequence
(Adams et al., 1988). Class 0 and Class I objects have
a spectrum that rises toward longer wavelengths, in-
dicating the presence of a large amount of cold mate-
rial surrounding the star. Such objects are probably
the youngest ones, and are still embedded in an op-
tically thick envelope that dominates the emission,
with some contribution being provided also by the
disc (Adams et al., 1988; Kenyon et al., 1993; Eisner
et al., 2005). Class II objects have a generally de-
clining spectrum, but still show a substantial excess
emission with respect to a standard stellar photo-
sphere. The emission in this case is thought to be
mostly due to the disc, which can be actively accret-
ing (and therefore self-luminous, see below) or sim-
ply heated by the stellar radiation, or most proba-
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bly a combination of the two. Stars in this Class are
also often called Classical T Tauri stars. Class III
objects (also sometimes referred to as weak line T
Tauri stars) have only small excess emission above
a stellar photosphere and most of the circumstellar
material has been cleared out by this stage. Addi-
tionally, an important small class of objects are the
so-called FU Orionis objects (that will be discussed
in more detail below), that are thought to be Class I
or Class II objects undergoing strong outbursts, due
to a sudden increase of their accretion rate.

3.1. Disc masses

Circumstellar discs are essentially composed of
gas and dust. The gaseous component dominates the
mass of the system, with the dust only contributing
to roughly 1-2% of the total disc mass. The dynam-
ics of the disc is thus almost completely dominated
by the gas. On the other hand, the dust component
is very important, as it dominates the opacity and
therefore the emission properties of the disc, as well
as the ionisation state of the gas, and hence the cou-
pling to the magnetic field. This puts us in a rela-
tively uncomfortable position, as most of the mass
of the disc is essentially invisible to us.

Disc masses are generally estimated from sub-mm
emission, since at these wavelengths dust emission is
usually optically thin and we can thus easily convert
the observed flux into a mass, if we know the dust
opacity (Beckwith et al., 1990). Recent surveys of
discs around solar mass stars in the Taurus-Auriga
complex (Andrews and Williams, 2005) indicate disc
masses between 10−4M⊙ and 10−1M⊙, with a me-
dian value of 5 10−3M⊙. Andrews and Williams
(2007) report the results for a smaller sample (pos-
sibly biased to larger masses) for which the median
mass is one order of magnitude larger and in a few
cases discs as massive as 0.2M⊙ have been found.
Similar values are also reported for the Orion region,
where in a few cases masses as large as 0.4M⊙ have
also been reported (Eisner and Carpenter, 2006).
Since the stellar mass for these samples ranges be-
tween 0.1 and 1M⊙, the mass ratios between the disc
and the star is between 10−3 and a few times 10−1.

It should be noted, however, that such mea-
surements suffer from very large systematic errors,
mostly due to uncertainties in the dust opacity. In-
deed, in many cases there is evidence for relatively
evolved dust grains, so that the dust size distri-
bution can be significantly different than in the

interstellar medium (Testi et al., 2001; Natta et al.,
2004). If dust grains have evolved to relatively large
sizes, their opacity would be reduced and the in-
ferred disc mass would correspondingly increase. It
is therfore likely that most of the above estimates
are actually underestimating the real disc masses
(Hartmann et al., 2006).

If we consider discs in the brown dwarf range, disc
mass measurements are only available for a limited
number of objects (Scholz et al., 2006), with upper
limits at the level of a few Jupiter masses, corre-
sponding to a few percent of the (sub)-stellar mass.

Moving up to high mass stars, the situation ap-
pears to be slightly different. While discs have been
detected only in a limited number of cases, the in-
ferred disc mass appears to be rather high, amount-
ing to a sizeable fraction of the central object mass
(for a recent review, see Cesaroni et al. 2007).

3.2. Disc sizes and temperature

In order to constrain the disc size we need to re-
solve it. This is usually done with sub-mm interfer-
ometry (Dutrey et al., 1996). Recent observations in
Taurus (Andrews and Williams, 2007) indicate sizes
of a few hundreds up to one thousand AU, roughly
consistent with the theoretical estimates made in
the previous Section.

For discs around high-mass stars the situation is
more complicated. While often rotating structures
are observed around young O stars, with sizes up to
105 AU, such structures are most probably not in
centrifugal equilibrium (see below), given the large
dynamical timescales involved. On the other hand,
smaller size discs (∼ 104AU, that might be in cen-
trifugal balance) are often observed around B stars
(Cesaroni et al., 2007).

Disc sizes in the brown dwarf regime are not very
well determined, but they often appear to be more
extended than a few tens of AU (Scholz et al., 2006).

The disc temperature varies considerably, even
within individual discs. In the inner regions, the tem-
perature can reach a few thousand K, while in the
outer disc, it can drop down to a few tens of K. The
disc temperature is important since, as will be de-
scribed below, it sets the typical scale for the disc
thickness H . Typically, circumstellar discs have as-
pect ratios H/R ∼ 0.1, where R is the cylindrical
radius in the disc.
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3.3. Accretion rates

Accretion rates Ṁ are generally measured either
from the strength of emission lines emitted as the
gas reaches the star in the so called ‘magneto-spheric
accretion’ model, when the innermost parts of the
disc are truncated by the stellar magnetic field, and
the gas falls almost freely onto the star along mag-
netic field lines, or from the veiling of photospheric
lines due to accretion shocks (Gullbring et al., 1998,
2000).

It should be noted here that these measurements
refer to the accretion rate onto the star, which does
not necessarily correspond to the accretion rate at
larger radii, if significant sinks of matter are present,
such as a disc wind (which is generally very small)
or, more likely, as a massive planet, whose presence
might act like a dam for the accretion flow.

In any case, typical values range from10−11M⊙/yr
for brown dwarfs, to 10−9−10−7M⊙/yr for T Tauri
stars, up to 10−5M⊙/yr for discs around massive
stars. Recently, attention has been put to the fact
that the accretion rates appear to scale almost
quadratically with the stellar mass (Natta et al.,
2004). While this scaling might bear some rela-
tion to the initial distribution of stellar properties
(Alexander and Armitage, 2006), it is not yet clear
how much this result is affected by observational
biases (Clarke and Pringle, 2006).

Occasionally, discs around solar mass stars are
observed to suddenly increase their accretion lumi-
nosity, and to produce large outbursts (called FU
Orionis outbursts), during which the accretion rate
can be as large as a few times 10−4M⊙/yr (Hart-
mann and Kenyon, 1996). Fu Orionis outbursts will
be discussed in more detail in Section 7 below.

3.4. Disc lifetimes

Disc lifetimes are generally obtained by compar-
ing the fraction of stars which show an infrared ex-
cess (taken as an indication of the presence of a disc)
in young stellar clusters of different ages (Haisch
et al., 2001; Sicilia-Aguilar et al., 2006). Typical
numbers are of the order of a few (up to 10) million
years.

4. Accretion disc dynamics

4.1. The thin disc approximation

Accretion discs are often assumed to be thin. This
means that the typical length in the vertical direc-
tion, the disc thickness H , is much smaller that the
radial distance R. We have seen above that this con-
dition generally holds for circumstellar discs, where
H/R ≈ 0.1.

The thin disc condition allows us to treat the
disc, to a first approximation, as infinitesimally thin,
and to introduce a small quantity, the aspect ratio
H/R ≪ 1. This implies that most of the equations
we are going to use can be integrated in the verti-
cal direction, and rather than dealing with quanti-
ties per unit volume (such as the density ρ), we will
deal instead with quantities per unit surface (such
as the surface density Σ). When “volume” quanti-
ties are needed (for example the viscosity ν), these
will generally be understood as vertically averaged.

The fundamental ordering of lengthscales H/R ≪
1 is also related to a similar ordering in terms of
velocities. Indeed, one can show (see section 4.4)
that this ordering is equivalent to requiring that the
sound speed cs is much smaller than the rotational
velocity vφ. It is useful to anticipate another impor-
tant relation between the relevant velocities, derived
by requiring that accretion takes place on a long
timescale. This condition implies that the radial ve-
locity vR should be smaller than both the sound
speed and the rotational speed. We can therefore
summarize these relations as

vR ≪ cs ≪ vφ. (6)

4.2. Gas dynamics of viscous discs

The evolution of accretion discs can be described
by the basic equations of viscous fluid dynamics: the
continuity equation and Navier-Stokes equations.
Given the geometry of the problem, we adopt cylin-
drical polar coordinates centred on the star and we
assume that to first order the disc is axisymmetric,
so that no quantity depend on the azimuthal angle
φ.

Consider then a disc with surface density Σ(R, t).
In cylindrical coordinates, the continuity equation
(integrated in the vertical direction following the
thin disc approximation) reads
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∂Σ

∂t
+

1

R

∂

∂R
(RΣvR) = 0. (7)

To determine the velocity v, we use the mo-
mentum equation including viscous forces, i.e. the
Navier-Stokes equation. This reads:

∂v

∂t
+ (v · ∇)v = −1

ρ
(∇P − ∇ · σ) − ∇Φ. (8)

The above equation is simply a statement of New-
ton’s second law.The left hand side is the accelera-
tion, including the second term, which describes the
momentum convected into the fluid by velocity gra-
dients 1 . On the right-hand side, we find the vari-
ous forces acting on the fluid. First of all, we have
the term describing pressure forces, where P is the
pressure and ρ is the density. We then have grav-
ity, represented by the last term on the right-hand
side, where Φ is the gravitational potential. In most
cases, gravity is dominated by the central star, with
mass M , so that the potential is simply given by:

Φ = −GM

r
, (9)

where here r is the spherical radius. The gravita-
tional force is obviously directed in the radial direc-
tion, and is given by:

−∇Φ = −GM

r2
r̂. (10)

However, in some cases (see Section 8.7) the disc
could be massive enough to make a non-negligible
contribution to Φ. The calculation of the gravita-
tional potential in this case is a bit more complex,
but under some conditions it can be easily accounted
for (Bertin and Lodato, 1999).

Finally, the second term on the right hand side
in equation (8) contains the stress tensor σ and de-
scribes the effect of viscous forces. This term plays a
very important role in accretion disc dynamics. The
nature of the disc viscosity and of the stress tensor
σ will be discussed at length below. In its simplest
form, it can be assumed to be given by classical shear
viscosity, so that the only non vanishing component
of σ in a circular shearing flow is the Rφ compo-
nent, proportional to the rate of strain RΩ′ (where
Ω′ = dΩ/dR):

σRφ = ρνR
dΩ

dR
, (11)

1 The two terms on the left-hand side are collectively called
the Lagrangian derivative of the velocity.

where Ω = vφ/R is the angular velocity and we have
introduced the kinematic viscosity ν, which has the
dimensions of length times velocity. Equation (8)
has three components in the radial, vertical and az-
imuthal directions, respectively, and each one de-
fines some important properties of accretion discs.
In the following three sections we will examine in
turn each of these three equations.

4.3. Radial equilibrium: centrifugal balance

Let us first consider the radial component of equa-
tion (8). Here, the ordering of velocities described
above turns out to be particularly useful. In partic-
ular, on the left-hand side, the first term, ∂vR/∂t,
is negligible with respect to the second term, which
(when using the appropriate expression for the dif-
ferential operators in cylindrical coordinates) gives
rise to the centrifugal term −v2

φ/R. On the right-
hand side, the viscous term vanishes and the pres-
sure term can be obtained using the equation of
state. If the gas is barotropic (i.e. if pressure only
depends on density), the sound speed is simply de-
fined as

c2
s =

dP

dρ
. (12)

We then have

1

ρ

∂P

∂R
=

c2
s

ρ

∂ρ

∂R
∼ c2

s

R
. (13)

Since cs ≪ vφ, also this term is second order with re-
spect to the leading term. The only term on the right
hand side able to balance the centrifugal force is
therefore the radial component of the gravitational
force (see eq. (10)). We then have, to first order

v2
φ

R
≃ dΦ

dR
=

GM

R2
, (14)

which express the condition of centrifugal balance,
where we have considered the case where the disc
self-gravity does not contribute to Φ, and where we
have also used the fact that for a thin disc r ∼ R.
The rotational velocity is then

v2
φ = v2

K =
GM

R
, (15)

and the angular velocity ΩK = vK/R is

Ω2
K =

GM

R3
. (16)
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The two conditions above are simply a restatement
of Kepler’s third law, and therefore discs that obey
these relations are called “Keplerian” discs. Note
that a Keplerian disc is strongly shearing in the ra-
dial direction, since Ω is a relatively strong decreas-
ing function of R. On the other hand, the angular
momentum per unit mass in the disc is

vKR =
√

GMR, (17)

and is thus an increasing function of R.
The above derivation is only valid to first approx-

imation, since we have neglected the pressure forces
in the radial direction. This is generally a good ap-
proximation, but in some cases the small depar-
tures from Keplerian rotation due to pressure effects
might play an important role. In particular, this is
the case when one considers the dynamics of small
solid bodies within the disc (a very important com-
ponent involved in the process of planet formation,
as discussed in the Chapter by Alexander of the
present book). The solids are not subject to pressure
and would thus move on exactly Keplerian orbits.
This therefore generates a small velocity difference
with respect to the gas, which in turn determines
a very fast migration of the solid (Weidenschilling,
1977; Rice et al., 2004, 2006). Let us then calculate
this correction. The radial equation of motion, in-
cluding pressure terms is 2

v2
φ

R
=

1

ρ

∂P

∂R
+

GM

R2
. (18)

If we introduce the sound speed cs and make the
simple assumption that the density ρ has a power
law dependence on radius, with power law index −β
(so that ρ ∝ R−β), we obtain

vφ =

√

GM

R

[

1 − β

(

cs

vK

)2
]1/2

. (19)

In cases where the disc is hot, in the sense that the
sound speed is non negligible with respect to the
Keplerian velocity, there can be sizeable deviations
from Keplerian rotation. This can happen, for ex-
ample, in the hot boundary layers close to the sur-
face of the star, if the disc is not truncated by the
magnetic field of the star.

r

R

z

Fig. 2. Geometry involved in the calculation of the disc
vertical structure.

4.4. Vertical structure: hydrostatic equilibrium

We now consider the vertical component of equa-
tion (8). Here, since the velocity in the vertical di-
rection is very small (the disc being confined to the
equatorial plane), we can neglect the left-hand side
of the equation altogether. The viscous force van-
ishes as well, since the only non-zero component of
the stress is in the Rφ direction. We are therefore left
with just two terms to balance: gravitational force
and pressure force in the vertical direction. Such a
situation, where gravity is balanced by pressure, is
called “hydrostatic balance”. The equation reads

1

ρ

∂P

∂z
= −dΦ

dz
. (20)

We again first consider the case of non-self-
gravitating discs. In this case, the vertical compo-
nent of gravity is simply

−GM

r2
ẑ ∼ −GM

r2
tan δ ∼ −GM

R2

z

R
, (21)

where r is the spherical radius and δ is the longitu-
dinal angle above the disc (see geometry in Fig. 2)
and the approximation is valid for small z. We can
then rewrite Equation (20) as

c2
s

ρ

∂ρ

∂z
= −GMz

R3
= −Ω2

Kz. (22)

The solution to this equation is straightforward if
the sound speed is independent of z. The vertical
density profile in this case turns out to be a Gaussian

ρ(z) = ρ0 exp

[

−Ω2
Kz2

2c2
s

]

= ρ0 exp

[

− z2

2H2

]

, (23)

where ρ0 is the midplane density and we have intro-
duced the thickness H such that

2 Note that this effect is similar to the so-called ‘asymmetric
drift’ discussed in the context of galaxy dynamics.
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H =
cs

ΩK
. (24)

Note the simple relation between the thickness, the
sound speed and the angular velocity. The disc as-
pect ratio is then

H

R
=

cs

vK
, (25)

which then demonstrates, as anticipated above, that
requiring that the disc be thin is equivalent to re-
quiring that the disc rotation is highly supersonic,
vK ≫ cs. This is generally satisfied for most of the
radial extent of the disc, except possibly very close
to central star, in cases where the accretion rate is
particularly large, such as in the case of FU Orionis
objects (Popham et al., 1993).

The above discussion shows the close relationship
between the disc thickness and its temperature T ∝
c2
s . The physical origin of this relation is easily un-

derstood: due to thermal pressure, the disc tends to
expand in the vertical direction, counteracting grav-
ity, and the hotter the disc, the stronger this ten-
dency is. In order to obtain the vertical structure
of the disc at different radii, we thus need to know
how does the temperature vary with radius. This can
vary significantly between different objects and in
particular it strongly depends on whether the disc is
“active” (that is, heated by the accretion process),
or “passive”, (that is, heated by the central star). We
postpone a more detailed discussion of these regimes
to section 5.2.

Before moving on to the analysis of the last com-
ponent of equation (8), let us see what happens when
the disc self-gravity is non-negligible. We first con-
sider the extreme case where the vertical gravita-
tional field is dominated by self-gravity. In this case,
we simply have to replace the gravitational force on
the right hand side of equation (22) with the force
produced by a slab of gas with surface density Σ.
This is given by:

Fsg = −2πGΣ. (26)

The solution of the hydrostatic balance in this case is
more difficult but can be done analytically (Spitzer,
1942). The density profile in this case is not Gaus-
sian, but is given by:

ρ(z) = ρ0
1

cosh2(z/Hsg)
, (27)

where the thickness in the self-gravitating case is:

Hsg =
c2
s

πGΣ
. (28)

Note that both the radial and the vertical compo-
nent of the gravitational field produced by the disk
itself are of the order of πGΣ ∼ GMdisc/R2. There-
fore, in order for the self-gravity to produce some
modifications to the Keplerian velocity profile, the
disc mass has to be a sizable fraction of the central
object (which is generally unlikely). On the other
hand, the vertical component of the star’s gravita-
tional field is smaller than the radial by a factor H/R
(cf. Eq. (21)) and thus the vertical structure of the
disc is affected by self-gravity already when the disc
mass is of the order of:

Mdisc

M
≈ H

R
≪ 1. (29)

Further discussions on this issue and a calculation
of the disc thickness in the mixed case when both
the star and the disc contribute to the vertical grav-
itational field can be found in Bertin and Lodato
(1999).

4.5. Angular momentum conservation

We finally discuss the last component of Navier-
Stokes equation, in which the viscous term plays an
important role. By the assumption of axisymmetry,
the pressure and gravitational forces do not give any
contribution in this direction. Let us then write the φ
component of Equation (8), opportunely integrated
in the vertical direction:

Σ

(

∂vφ

∂t
+

vRvφ

R
+ vR

∂vφ

∂R

)

=
1

R2

∂

∂R

(

R2TRφ

)

,(30)

where TRφ is the vertical integral of the relevant
component of the stress tensor, and the last two
terms on the left hand side are the obtained from
writing the differential operators in cylindrical co-
ordinates. Combining the above equation with con-
tinuity equation (7) and after a little algebra, it is
possible to rewrite it in a more transparent form:

∂

∂t
(ΣRvφ) +

1

R

∂

∂R
(RvRΣRvφ) =

1

R

∂

∂R

(

R2TRφ

)

.(31)

The physical interpretation of the above expression
is readily apparent. The left hand side is the La-
grangian derivative of the angular momentum per
unit mass ΣRvφ, while the right hand side is the
torque exerted by viscous forces.

A very important case occurs when the rotation
curve is Keplerian and the stress tensor is the simple
viscous stress tensor. In this case, we have vφ =
√

GM/R, Ω = vφ/R =
√

GM/R3, Rvφ =
√

GMR.
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The vertically integrated stress tensor is given by
(cf. Eq. (11)):

TRφ = νΣRΩ′. (32)

Then equation (31) takes the form:

∂

∂t
(ΣR2Ω) +

1

R

∂

∂R
(ΣvRR3Ω) =

1

R

∂

∂R
(νΣR3Ω′).(33)

With the help of the continuity equation (Eq. (7)),
we can obtain the radial velocity in this case from
equation (33):

vR =
∂

∂R (νΣR3Ω′)

RΣ ∂
∂R (Rvφ)

= − 3

ΣR1/2

∂

∂R
(νΣR1/2), (34)

which can be inserted back in equation (7) to finally
give:

∂Σ

∂t
=

3

R

∂

∂R

[

R1/2 ∂

∂R

(

νΣR1/2
)

]

. (35)

The equation above is one of the key equations in ac-
cretion disc theory. It is a diffusion equation for the
surface density Σ, whose temporal evolution is deter-
mined only by the kinematic viscosity ν. This clearly
emphasises the extremely important role of viscosity
(or of whatever process is providing a non-negligible
stress tensor) in accretion disc theory, since it ulti-
mately is the quantity that determines the evolution
of the disc density.

4.5.1. On the direction of angular momentum flux

In the next sections we will provide some exam-
ples of solutions of Equation (35) both in the time-
dependent case, and in a steady state. However, be-
fore moving on, it is instructive to point out some
subtleties associated with the derivation above. As
it is apparent from Eqs. (31) and (32) above, the
internal viscous torque (that is, the flux of angular
momentum transported by viscosity across an an-
nulus of the disc) is proportional to the rate of shear
RΩ′ and in particular, the outward flux of angular
momentum across an annulus at radius R (i.e. the
torque of an inner annulus on an outer one) is given
by:

G(R) = −2πR2TRφ = −2πνΣR3Ω′. (36)

This result is intuitively correct: if the disc is in solid
body rotation, with Ω = const., obviously shear vis-
cosity does not transport any angular momentum
and G(R) vanishes. Also note that when, as usually
occurs, for example in Keplerian discs, Ω(R) is a

decreasing function of radius, G(R) is positive and
angular momentum is transported from small radii
to large radii. This is essential if we want to have
accretion: material at small radii gives its angular
momentum to material at larger radii and moves
inwards to a region where the specific angular mo-
mentum is smaller. The above result is clearly cor-
rect and also reproduces the intuitive behaviour of
viscous circularly shearing motion. However, some
difficulties arise when one tries to explain this be-
haviour in terms of kinetic theory, as often done,
for example in many textbooks (Frank et al., 2002;
Hartmann, 1998). This difficulty has been pointed
out by Hayashi and Matsuda (2001) and solved by
Clarke and Pringle (2004). In the kinetic theory ap-
proach, transport is determined by the collisions of
fluid elements moving between different orbital radii
due to random velocities. Thus, particles are emitted
with random velocity at some radius with some spe-
cific angular momentum, move to a different radius
where they collide and release their angular momen-
tum, which in general is different from the specific
angular momentum at the new location, thus lead-
ing to mixing and transport of angular momentum.
The problem here is that naively calculating the re-
sulting angular momentum flux due to this process
(Hayashi and Matsuda, 2001) gives (as one might
expect) the result that the flux is proportional to
the negative gradient of the specific angular momen-
tum, rather then the correct result (where the flux is
proportional to the negative gradient of the angular
velocity). This is perfectly analogous to the case of
a linear shear flow, where the arguments above (also
found in many textbooks of hydrodynamics) lead to
the conclusion that, in this case, the linear momen-
tum flux is proportional to the negative gradient of
linear momentum.

If really the angular momentum flux was propor-
tional to −∇R2Ω rather than to −∇Ω, this would
be disastrous for accretion discs. Indeed, if we con-
sider the case of Keplerian discs, we see that while
∇Ω is directed inwards (leading to an outward an-
gular momentum flux), we have that ∇R2Ω is di-
rected outwards, leading to an inward flux of an-
gular momentum, which would totally preclude ac-
cretion. Even worse, in the simple case of a spread-
ing ring (described in more detail below), if really
angular momentum were diffused down its gradi-
ent (which in this case is directed outwards), rather
than spreading under the action of viscosity, the ring
would tend to collapse in an infinitesimally thin an-
nulus!
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Fig. 3. Disc viscosity from kinetic theory. Sketch of the angu-
lar momentum flux from emission point E to reference sur-
face S as seen in a reference frame corotating with E. Even
if particles are emitted isotropically at E, due to Coriolis
force, their path is not straight and they tend to intersect the
reference surface S more normally if they are emitted in a
prograde direction and more tangentially if they are emitted
in a retrograde direction, thus enhancing the contribution of
prograde particles to the flux at S.

The resolution of this difficulty was given by
Clarke and Pringle (2004). The point is that even
if the random distribution of particles is isotropic
at the location where they are emitted, it is not
isotropic at the position where they collide and re-
lease their angular momentum, and relatively more
particles move on prograde orbits than retrograde
ones. Thus, even if an annulus at a smaller radius
has on average a smaller specific angular momen-
tum than an annulus at a larger radius, it is pref-
erentially those particles that happen to have an
excess angular momentum that collide at a larger
radius, releasing their angular momentum and so
transporting it (correctly) from the inside out. The
picture is even clearer if one considers the dynamics
in a reference frame co-rotating with the emission
location, E (see Fig. 3). In the (non-inertial) frame
of E, particles are emitted isotropically. However,
their path is not straight, due to the effect of Cori-
olis force. As seen in Figure 3, particles emitted in
the prograde direction (that have an excess angular
momentum with respect to E) tend to intersect a
reference surface S more normally, while retrograde
particles tend to intersect S on more tangential
paths. Thus the contribution of prograde particles
to the flux at S is larger than that of retrograde ones
(see Matsuda and Hayashi 2004), thus removing the
inconsistency.

Let us then summarise what have we learned so
far. The radial component of the equation of mo-
tion generally takes the form of centrifugal balance,
leading to

vφ =

√

GM

R

[

1 − β

(

cs

vK

)2
]1/2

, (37)

thus indicating that rotation is Keplerian, with some
correction terms due to pressure. The vertical equa-
tion of motion takes the form of hydrostatic balance,
so that (in the non-self-gravitating case) the vertical
density profile is Gaussian with thickness

H

R
=

cs

vK
, (38)

which shows than in order for the disc to be thin
we require cs ≪ vK. Finally, conservation of angular
momentum and the continuity equation for a Keple-
rian disc lead to the following diffusive evolutionary
equation for the disc surface density Σ

∂Σ

∂t
=

3

R

∂

∂R

[

R1/2 ∂

∂R

(

νΣR1/2
)

]

. (39)

4.6. Time-dependent solutions

Clearly, the equations derived above have a lim-
ited applicability if we do not specify what the vis-
cosity is, and in particular whether it depends or
not on other disc properties, such as surface den-
sity, temperature, radius, etc. As will be discussed
below, in some cases, the relationship between vis-
cosity and surface density might even change the
diffusive character of equation (35).

Nevertheless, we can still gain some insight into
disc dynamics by considering a couple of sim-
ple cases, which were initially discussed by von
Weizsäcker (1948) and Lüst (1952).

4.6.1. The spreading ring

Consider, for example, the case in which ν is sim-
ply a constant, independent of radius and Σ, and
the initial condition for the surface density is an in-
finitesimally thin ring of mass m, whose shape is a
δ function centered at some radius R0:

Σ(R, t = 0) =
m

2πR0
δ(R − R0) (40)

The solution to equation (35) in this case was found
by Lynden-Bell and Pringle (1974):
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Fig. 4. Evolution of the surface density according to Eq. (35).
In this case the viscosity ν is taken to be simply a constant
and the initial surface density is a thin ring centered at
R = 1. The various plots refer to τ = 0.01, 0.05, 0.1 and 0.15.

Σ(x, τ) =
m

πR2
0

x−1/4

τ
e−(1+x2)/τI1/4

(

2x

τ

)

, (41)

where I1/4 is a modified Bessel function of the first
kind, x = R/R0 and τ = 12νt/R2

0. Apart from the
complicated form of the analytic solution above, a
few important features can be already be seen. First
of all, note that the solution only depends on time
through the combination τ = 12νt/R2

0. This allows
us to introduce a typical timescale for the viscous
evolution of the disc, tν ∼ R2/ν. While this result
has been obtained in the particular case of a spread-
ing ring, its validity is absolutely general and is in
fact implicit in the structure of equation (35) itself.
The evolution of the surface density is shown in Fig.
4, where the different lines refer to different times
τ = 0.01, 0.05, 0.1 and 0.15. This figure illustrates
quite clearly why this example is called “the spread-
ing ring”. We see here that what happens indeed
is that under the action of viscous forces the disc,
rather than merely accreting, spreads both inwards
and outwards. This outward spreading is needed in
order to conserve angular momentum. Viscosity acts
on the fluid to redistribute angular momentum be-
tween different annuli, the total angular momentum
being conserved. In this way, as the inner parts of
the disc lose their angular momentum and accrete,
the outer parts take up the excess angular momen-
tum and move outward. A detailed analysis of the
analytic solution (see Frank et al. 2002 and Pringle

1 10 100
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0.001

0.01

0.1

1

Fig. 5. Evolution of the surface density according to Eq.
(35). In this case the viscosity ν ∝ R and the solution is the
self-similar solution (Lynden-Bell and Pringle, 1974). The
solid lines show, from top to bottom, the self-similar solution
at increasingly large times (T = 1, 2, 4 and 7 respectively).

1981) shows that the transition between inward and
outward motion occurs at a radius of order Rtr ∼
tν/R0 ∼ R0(t/tν) and is therefore an increasing
function of time. Therefore, at late times, only the
outermost parts of the disc move outwards, and most
of the mass is eventually accreted. For t → ∞, all
the mass in the ring is accreted and the angular mo-
mentum is transported to infinitely large radii by a
negligibly small amount of mass.

4.7. Self-similar solutions

Another important class of solution (also dis-
cussed by Lynden-Bell and Pringle 1974) is found
in cases where the viscosity has a simple power-law
dependence on radius, ν ∝ Rb. In this case, it is
possible to find a self-similar analytical solution.
Let us consider the simple (but not too unrealistic,
see also King 1998) case where ν ∝ R and the ini-
tial density profile is such that accretion proceeds
almost steadily out to a typical radius R1 at which
the density is exponentially truncated. A detailed
derivation in this case can be found in Hartmann
(1998). The surface density and the mass accretion
rate Ṁ as a function of time are given by:

Σ(R, t) =
CT−3/2

3πν(R)
exp

(

−R/R1

T

)

, (42)
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Ṁ(R, t) = CT−3/2

[

1 − 2R/R1

T

]

exp

(

−R/R1

T

)

,(43)

where T = 1 + t/(R2
1/3ν(R1)) and C is just a nor-

malization constant. Here again, we can see that the
typical timescale over which the disc evolves is the
viscous timescale tν ∼ R2/ν. This relation is par-
ticularly useful from an observational point of view.
Indeed, if we were able to have reliable measure-
ments of disc sizes (for example, from sub-mm ob-
servations) and an estimate of the viscous timescale
(obtained, for example, by comparing the fraction
of young stars with discs in young stellar clusters
of different ages), we could obtain an estimate of
the magnitude of “viscosity” in the disc. The evo-
lution of the density in this case is plotted in Fig.
5. Also in this case, as for the spreading ring, the
disc spreads significantly outwards, even if most of
the mass is eventually accreted. The transition be-
tween inward and outward moving portion of the
disc for the self-similar solutions occurs at a transi-
tion radius Rtr ∼ R1(t/tν(R1))

1/(2−b) and therefore
increases with time (for the particular case where
b = 1 described above, we have that Rtr increases
linearly with time). As the disc empties out, the ac-
cretion rate on to the star drops steadily.

A question naturally arises at this stage. If we ob-
serve a given sample of discs, should we expect their
observed size to increase or to decrease with age?
The answer to this question strongly depends on the
sensitivity of our measurements. Let us consider the
density plots shown in Fig. 5. If the sensitivity of
our measurement is very high, so that we can detect
surface densities as low as, say, 0.0001 in the scale
of Fig. 5, then clearly as the age of the system in-
creases, the observed size will increase as well. On
the other hand, if the sensitivity is much lower and
we can only detect surface densities larger than, say,
0.01 in the same scale, then the observed disc size
will decrease with the age of the system.

4.8. Steady-state solution

Let us now look at the form of steady-state solu-
tions of the disc equations for a Keplerian rotation
curve. In a steady state, the continuity equation (7)
becomes:

Ṁ = −2πRvRΣ, (44)

where the constant Ṁ is the mass accretion rate
and the signs have been chosen in such a way that

when vR is negative (i.e. directed inwards) the accre-
tion rate is positive. Analogously, angular momen-
tum conservation becomes:

ṀΩR2 − 3πνΣΩR2 = J̇ (45)

where J̇ is the constant net flux of angular momen-
tum, and is determined by two contributions: the
first term on the left hand side, which indicates the
angular momentum advected with the accretion pro-
cess, and the second term, which indicates the out-
ward flux produced by viscous torques.

J̇ is sometimes determined by using the so-called
“no torque” assumption, according to which at the
disc inner radius Rin the angular velocity profile flat-
tens (due to the presence of a boundary layer where
the disc connects to the central object) so that its
gradient and therefore the viscous torque vanish,
thus implying J̇ = Ṁ(ΩR2)in = Ṁ

√
GMRin. In-

serting this in equation (45), we obtain:

3πνΣ = Ṁ

(

1 −
√

Rin

R

)

. (46)

At large radii, R ≫ Rin, the surface density and
the viscosity satisfy the following simple relation:

Ṁ = 3πνΣ, (47)

that is, surface density and viscosity are inversely
proportional (cf. the asymptotic behaviour of the
self-similar solution, Fig. 5 and Eq. (42)).

5. Accretion disc energetics

5.1. Radial temperature profile

Up to now, we have emphasised the role of viscos-
ity and of viscous torques in redistributing angular
momentum through the disc, hence allowing accre-
tion. On the other hand, as accretion takes place, a
significant amount of gravitational potential energy
has to be dissipated by viscous forces. Let us then
calculate this quantity. Let’s consider the expres-
sion for the total torque exerted by an annulus on a
neighbouring one at larger radius, Eq. (36). The net
torque G(R) exerted on an annulus of radial extent
∆R is given by:

G(R − ∆R/2) − G(R + ∆R/2) = −∂G

∂R
∆R. (48)

The power produced by this torque per unit radial
interval is then:
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−∂G

∂R
Ω = −

(

∂

∂R
(GΩ) − GΩ′

)

. (49)

We then see that the annulus loses energy due to two
different contributions: the first one is just the radial
derivative of GΩ and is related to energy transport
due to viscosity: when integrated over the disc sur-
face it will vanish except for the energy transported
out of the disc boundaries. The second term does
represent energy dissipation due to viscosity and we
can thus write the power dissipated per unit area by
both sides of the disc as:

D(R) =
−GΩ′

2πR
= νΣ(RΩ′)2 =

9

4
νΣΩ2, (50)

where the last equality holds for Keplerian discs.We
can also calculate the total power emitted by the disc
in a steady state. If we assume that the disc extends
to infinity, we have that the disc luminosity is:

Ldisc =

∞
∫

Rin

2πRD(R)dR (51)

=

∞
∫

Rin

3GMṀ

2R2

(

1 −
√

Rin

R

)

dR =
1

2

GMṀ

Rin
,

where we have also used equation (46). Note that the
luminosity is only half of the potential energy lost
by the accreting matter, the remaining half being
needed to keep the disc in Keplerian rotation at Rin.

Another subtlety illustrates the role of energy
transport due to viscous torques. Let us calculate
the energy dissipated by an annulus of width ∆R,
far from the inner boundary. This is given by:

2πRD(R)∆R =
3GMṀ

2R2
∆R. (52)

Now, we know that (GMṀ/2R2)∆R comes from
the release of gravitational binding energy, but
where does the rest come from? The extra energy is
provided by the energy transported from the inner
disc and indeed it can be shown that the energy
transport term in equation (49) provides just the
right amount of energy. Obviously (in order to sat-
isfy global constraints) the situation is reversed at
small radii (for R < 9Rin/4) where the energy dissi-
pated is less than the energy released by accretion,
the excess being transported outwards.

If the power from equation (50) is radiated away
at R as thermal blackbody emission, we can then
estimate the surface temperature of the disc from
D(R) = 2σSBT 4

s , where σSB is Stefan-Boltzmann

-2 0 2 4
-4

-2

0

2

Fig. 6. Sketch of the SED of an actively accreting disc. The
thick line is the full disc spectrum, while the two thin lines
show two simple blackbody functions at Tmin and Tmax. The
units in the axes are arbitrary. The SED looks like a stretched
blackbody function. At long wavelengths λ > hc/kTout, the
SED approaches the Rayleigh-Jeans tail. At very short wave-
lengths λ < hc/kTin, the SED has a sharp cut-off due to
Wien’s law, while at intermediate wavelengths the SED is a
simple power law, with index depending on the temperature
profile.

constant and where the factor 2 comes from the fact
that the disc has two sides, so only half of D(R) is
radiated by each side. We thus get:

T 4
s (R) =

3GMṀ

8πσSBR3

(

1 −
√

Rin

R

)

, (53)

Far from the inner boundary, the temperature pro-
file of the disc has therefore the characteristic scal-
ing Ts ≈ Tdisc(R/Rin)

−3/4, where

Tdisc =

(

3GMṀ

8πσSBR3
in

)1/4

. (54)

We thus see that the temperature profile of a vis-
cously accreting disc in a steady state does not de-
pend on viscosity. Actually, viscosity obviously im-
plicitly enters in the determination of the tempera-
ture profile, by allowing the disc mass to be be ac-
creted at a given rate Ṁ .

5.2. Disc spectral energy distribution

Now that we have obtained the temperature pro-
file of the disc, we can calculate the expected spectral
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energy distribution (SED). This is easily obtained
under the assumption that the disc radiates as a
blackbody, by integrating several blackbody spectra
(with different temperature) over the disc surface.
The flux Fλ emitted at wavelength λ is then:

λFλ =
cos i

d2

Rout
∫

Rin

2πRλBλ[Ts(R)]dR, (55)

where d is the distance to the disc, i is the inclina-
tion and Bλ(T ) is the Planck function. The resulting
SED is a superposition of several blackbody func-
tions extending from the wavelength corresponding
to the highest disc temperature Tin (which occurs
in the inner disc) to the wavelength corresponding
to the lowest temperature Tout (which occurs in
the outer disc), and has the shape of a stretched
blackbody function as shown in Fig. 6. At long
wavelengths λ > hc/kTout, the SED approaches
the Rayleigh-Jeans tail. At very short wavelengths
λ < hc/kTin, the SED has a sharp cut-off due to
Wien’s law, while at intermediate wavelengths the
SED is a simple power law, with index depending
on the temperature profile. It is possible to show
(Adams et al., 1988) that if the temperature profile
is a power-law with index −q, then the power-law
index of the disc SED λFλ at intermediate wave-
lengths is given by n = 2/q−4. We then see that the
temperature profile of an accreting disc Ts ∝ R−3/4

leads to an SED with λFλ ∝ λ−4/3.
The full SED of an accreting protostar is given by

the spectrum of the star, that, to a first approxima-
tion, can be represented by a single blackbody spec-
trum at the temperature of the stellar photosphere,
plus the spectrum of the accretion discs, whose tem-
perature is much lower, so that the SED extends
down to longer wavelengths, in the near and mid in-
frared. Indeed, the first evidence for the existence
of discs around young stars came from observations
of infrared excess with IRAS first (Beichman et al.,
1986), and later with ISO.

While the simple expectation that disc SEDs
span a relatively large range of wavelengths is gen-
erally confirmed by observations (especially in the
infrared and sub-mm range), a detailed comparison
of the model described above with observed disc
SED has proven to be more problematic. Indeed,
in most cases, observed SEDs show significant de-
partures from the standard power-law with index
n = −4/3. The cleanest example where the ob-
served SED of a protostellar disc is well reproduced

by the “standard” disc SED as described above (at
least over a sizeable wavelength range), is the case
of FU Orionis objects (Kenyon et al., 1988; Kenyon
and Hartmann, 1991). Such objects are outbursting
objects (see also below) and their accretion rates
can be very large, of the order of 10−5−10−4M⊙/yr
(for a review, see Hartmann and Kenyon 1996) .

For most circumstellar discs, such as those ob-
served around T Tauri and Herbig Ae/Be stars, the
infrared SED is much flatter than predicted from
the active disc model above, indicating a much shal-
lower radial temperature profile. In particular, most
cases are consistent with a temperature profile of the
form Ts ∝ R−1/2 (Beckwith et al., 1990). Indeed, the
above description does not take into account an im-
portant heating term for the disc: irradiation from
the central star. The effect of stellar irradiation on
the disc temperature profile has been considered by
Adams and Shu (1986) and Adams et al. (1988). In-
terestingly, it turns out that the temperature profile
for a flat disc (that is, a disc with constant thickness
H) dominated by irradiation is given by:

Tirr ≈ T⋆

(

R

R⋆

)−3/4

, (56)

where T⋆ and R⋆ are the stellar temperature and
radius, respectively. This can be simply understood
as follows. The stellar flux at the surface of the star
is ≈ σSBT 4

⋆ . At a distance R from the star, the flux
is decreased by a factor (R/R⋆)

−2. An additional
factor (R/R⋆)

−1 comes from geometrical considera-
tions. Since the disc is flat, it absorbs only a fraction
sin θ ≈ θ of the stellar flux, where θ ≈ R⋆/R is the
angle under which the star is seen from the disc. We
thus see that, including irradiation on a flat disc still
produces a steep temperature profile (in fact, the
same kind of profile obtained for an accreting disc),
which remains inconsistent with observations.

In fact, the above result is not entirely self-
consistent. The point is that if the temperature
is ∝ R−3/4, we then have that the sound speed
cs ∝ R−3/8 and the thickness H = cs/Ω ∝ R9/8.
The disc thus “flares” in the outer regions, with the
aspect ratio H/R increasing with radius. The outer
parts of the disc will thus absorb a larger fraction of
the stellar flux and the temperature profile will not
be as steep as predicted above. Kenyon and Hart-
mann (1987) have considered self-consistent models
of such flared disc, and found that in this way it is
possible to broadly reconcile the models with the
observations, and to reproduce the required profile
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T ∝ R−1/2. Chiang and Goldreich (1997) have fur-
ther elaborated on these models, and propose that
the disc at a given radius can simply be represented
by two zones: an upper, hot layer (much hotter than
the temperature predicted by a simple blackbody
model) that absorbs efficiently the stellar radiation
and re-emits half of it, and a cooler layer below,
which reprocesses the remaining half and re-emits
thermally in the infrared. Recent models of disc
SED (see, for example, Dullemond et al. 2001) are
generally variations on this basic simple model. An
up to date account of such modeling can be found
in Dullemond et al. (2007).

Finally, it is important to stress that (apart from
a few exceptions) in most cases discs around young
stars are neither entirely “active” (that is, with SED
dominated by accretion) nor “passive” (that is, with
SED dominated by irradiation). In general both in-
ternal and external heating will provide some con-
tribution, the relative importance of the two be-
ing determined by a comparison of accretion versus
stellar luminosity. It is then interesting to see that
(for a young solar type star) the two contributions
are comparable for accretion rates of the order of
10−8M⊙/yr (Armitage, 2007), which falls roughly in
the middle of the range of accretion rates observed
for T Tauri stars.

6. Timescales

Before moving on to discuss several instabilities
that might occur in accretion discs, it is useful to
briefly consider what are the various timescales over
which accretion discs form and evolve. We have al-
ready encountered a few important timescales. First
of all, we have the dynamical timescale, which is
simply related to the orbital period T . We have:

tdyn = Ω−1 =
T

2π
. (57)

This is roughly the time needed to reach centrifu-
gal equilibrium and, for a Keplerian disc, it scales
with R3/2 (in particular, tdyn =

√

R3/GM). This is
also the typical growth time of some important in-
stabilities, such as the magnetorotational and grav-
itational instability, discussed below. A second im-
portant timescale is the vertical timescale, needed to
reach hydrostatic balance in the vertical direction.
This is given by the sound crossing time across the
disc thickness H :

tz =
H

cs
= Ω−1 = tdyn. (58)

Interestingly, this timescale is equal to the dynam-
ical one. A simple understanding of this can be ob-
tained as follows. Consider a fluid element at the top
surface of the disc. If this element moved on an ex-
actly Keplerian orbit around the central star, after
half a period it would be on the bottom surface (and
similarly a fluid element at the bottom would move
to the top after half a period). In order to prevent
this, and to keep the ‘top’ to stay on top, the fluid
element needs to receive an upward force, provided
by pressure, that has to be effective on the short or-
bital (and therefore dynamical) timescale.

A third timescale is the thermal timescale tth,
which corresponds to the time needed by the disc
to modify its thermal structure, and its tempera-
ture. In general, we will have a cooling timescale
tcool which is set by the specific cooling processes
in the disc, and a heating timescale theat which (for
active discs) is determined by energy release due
to accretion. In thermal equilibrium, clearly these
two timescales are equal. If we refer to the heating
timescale, this is simply given by the ratio between
the heat content at a given radius and the power
produced by accretion (eq. (50)):

tth =
Σc2

s/(γ(γ − 1))

νΣ(RΩ′)2
=

4

9γ(γ − 1)

1

αΩ
, (59)

where γ is the ratio of the specific heats and where
we have also used the so-called α-prescription for
viscosity (that will be described more in detail below
in section 8), according to which ν = αΩH2, where
α is a dimensionless parameter smaller than unity.
We thus see that tth ∼ tdyn/α ≫ tdyn.

Finally, we have the viscous timescale, which sets
the scale for the evolution of the surface density.
From the analysis of time-dependent models above,
we have seen that this timescale is given by:

tν =
R2

ν
=

(

H

R

)−2
1

αΩ
≫ tth, (60)

where again we have used the α-prescription. We
thus see that the various timescales are ordered in
the following way:

tν ≫ tth ≫ tz ∼ tdyn, (61)

which then shows that the centrifugal balance in
the radial direction and hydrostatic balance in the
vertical direction are very rapidly achieved, while
the disc temperature generally evolves on a longer
timescale, and finally, on an even longer timescale,
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one can see some evolution in the surface density
profile.

Finally, note that all of the above timescales are
a function of radius. In particular, if α and H/R are
constant (which is not generally true), then they all
scale in the same way, and for a Keplerian disc, they
increase with radius as R3/2. Thus the evolution of
the inner disc is generally much more rapid than the
evolution of the outer disc.

7. Limit cycle instability and FU Orionis

outbursts

Accretion discs can be subject to a large number
of instabilities: from the standard thermal instabil-
ity (which occurs when the net heating rate at a
given pressure is an increasing function of tempera-
ture), to the very important instabilities which oc-
cur when some physical effects ignored so far (such
as magnetic fields or the disc self-gravity) are in-
cluded. Given the importance of the latter instabili-
ties in providing some likely mechanism to transport
angular momentum, we will discuss them in more
detail below. In this section we will rather focus on
another kind of instability (the so-called “thermal-
viscous”, or “limit cycle” instability), which is par-
ticularly relevant to some circumstellar discs. This
instability was first discussed in the context of accre-
tion discs in evolved galactic binaries, and in partic-
ular it is very successful in explaining the so called
“dwarf novae” outbursts (Faulkner et al., 1983; Pa-
paloizou et al., 1983; Lin et al., 1985). In the con-
text of discs around young stars, it has been very
often considered as the likely outburst mechanism
for FU Orionis outbursts (Hartmann and Kenyon,
1996), even if its application to this class of system
is somewhat less successful.

Let us reconsider Equation (35) above. As men-
tioned above, this is a simple diffusion equation for
the surface density Σ. However, this is strictly true
only in the case in which the viscosity ν is not de-
pendent on Σ. Of course, in general ν can be a func-
tion of radius, temperature and even density. In the
latter case, the equation becomes a non-linear equa-
tion for Σ for which the solution can be much more
complicated than the simple cases described above.
Some interesting behaviour can be predicted also in
this more general case (Frank et al., 2002). In fact,
when ν is a function of Σ, eq. (35) can be re-written
in terms of the variable µ ≡ µ(Σ) = νΣ, which is
proportional to the net flux of matter across a disc

annulus. We have then:

∂µ

∂t
=

∂µ

∂Σ

3

R

∂

∂R

[

R1/2 ∂

∂R

(

µR1/2
)

]

. (62)

Now, when the coefficient ∂µ/∂Σ is positive, the evo-
lution equation for µ is still a diffusion equation with
no particular problems. However, when ∂µ/∂Σ < 0
the character of the equation changes and we have
an instability. A simple interpretation of the nature
of this instability can be given if we consider than
µ is nothing else than the net mass flux out of a
given disc annulus. Therefore, if at a given radius,
following a decrease in Σ, the flux µ increases, this
will cause a further reduction in Σ and therefore it
will trigger a runaway behaviour at that radius. We
now need to ask whether it can ever happen that
∂µ/∂Σ < 0. Since ν is in general a function of disc
density and temperature, the detailed relation be-
tween µ and Σ will depend on the detailed thermal
structure of the disc. Specific models of this relation
for discs around young stars have been provided by
Bell and Lin (1994), based on detailed opacity laws
appropriate for circumstellar discs. The relationship
between µ and Σ obtained by Bell and Lin (1994)
can be seen in Fig. 7. The upper panel shows the
opacity coefficient used by Bell and Lin (1994) as a
function of temperature and for different disc den-
sities (indicated by diferent solid lines), while the
lower panel shows the µ−Σ relation in thermal equi-
librium derived in this case, where the different lines
refer to different disc radii. It can be seen that they
have a typical S-shape, and that for mass fluxes of
the order of 10−6M⊙/yr (almost independent on ra-
dius) we have indeed an unstable configuration with
∂µ/∂Σ < 0. The kinks in the µ − Σ curves cor-
respond to temperatures between 103K and 104K,
where the opacity shows a sudden steep rise due to
partial ionization of hydrogen.

The evolution of the system can be qualitatively
described as follows. Let us consider a given radius
in the disc (say, the one corresponding to the right-
most curve in the lower panel of Fig. 7). Let us as-
sume that initially the disc density is low (say, less
than 105g/cm2, on the lower branch of the S-curve)
and that the disc is fed at a rate of the order of
10−6M⊙/yr. Since the equilibrium mass flux corre-
sponding to the disc density is much smaller than
the flux at which the disc is fed, the density will
rise, moving up the curve, until the density reaches
the maximum value at which the annulus is sta-
ble (corresponding to the “kink” in the S-curve).
At this point the thermal-viscous instability is trig-
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Fig. 7. Upper panel: opacity coefficient as a function of tem-
perature (the different curves refer to different densities).
Lower panel: the resulting relation between mass flux µ and
surface density (the different curves refer to different radii
in the disc). Figure from Bell and Lin (1994). The units are
such that the temperature is in K, the mass flux is in M⊙/yr,
the surface density is in g/cm2 an the opacity in cm2/g.

gered and the temperature and the local mass flux
will jump up to the upper branch of the S-curve,
to the stable value at that density (which in this
example corresponds to a mass flux of the order
of 10−4M⊙/yr). Now, the mass flux in the upper
branch is much larger than the rate at which the disc
is fed, so that the density will slowly decrease down
to the minimum stable density in the upper branch
of the S-curve. This then causes another jump in
the mass flux down to a stable solution in the lower
branch and the whole process will repeat again, lead-
ing to a limit cycle in which the mass flux at this
radius oscillates between a high value of the order
of 10−4M⊙/yr, corresponding to an outburst phase
and a low value of the order of 10−7M⊙/yr, corre-
sponding to a quiescent phase. On average, over long
periods of time the mass acretion rate will be of the
order of the feeding rate ≈ 10−6M⊙/yr.

The above arguments apply to the behaviour of a

single annulus of the disc, assumed to be indepen-
dent on the neighbouring ones. Of course, in gen-
eral we should solve the full equation and consider
the interaction of the various annuli. This analysis
(Lin et al., 1985) reveals a number of important fea-
tures. Once the instability is triggered at some ra-
dius, at which the temperature is high enough to
cause hydrogen ionization, two instability (ioniza-
tion) fronts develop: a fast one, moving inwards (in
an “avalanche” fashion, to use the terminology of
Lin et al. 1985) and a slow one moving outwards
(in a “snowplough” fashion). When the ionization
front reaches the innermost parts of the disc, the in-
stability will result in a large increase of the optical
and infrared flux emitted by the disc and the ris-
ing timescale for the luminosity corresponds to the
speed at which the instability front reaches the in-
ner disc. The outward moving front moves out to a
limiting radius, corresponding to the lowest surface
density that can be stable in the high state. The disc
is then characterized by an inner outbursting region
and an outer region which remains in the low state.
After a time of the order of the viscous timescale
at the outer edge of the outbursting region, the disc
locally drops down to the low state and the insta-
bility retreats from the outside in, leaving an inner
disc which has been essentially emptied out by the
outburst and is ready to be slowly filled up again,
eventually leading to a new outburst. This recurrent
behaviour is very often observed in evolved binary
systems such as dwarf novae and an example of a
model reproducing this behaviour in this context can
be seen in Fig. 8, kindly provided by Patrick Deegan
and Graham Wynn, which shows the evolution of
the accretion rate of a typical dwarf nova outburst.

7.1. FU Orionis outbursts

How does the behaviour described above compare
to observations of discs around young stars? As men-
tioned above, the limit cycle instability model has
been often used to describe FU Orionis outbursts
(for a detailed review, see Hartmann and Kenyon
1996). FU Orionis objects are a small class of pro-
tostellar systems undergoing large outbursts, dur-
ing which their luminosity increases by as much
as three orders of magnitude. Unfortunately only a
very small number of such systems have been ob-
served and in only three cases (the prototypical FU
Ori, V1057 Cyg and V1515 Cyg) do we have a de-
tailed knowledge of the lightcurve over a long period
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Fig. 8. Recurrent outbursts due to limit cycle instability in
binary systems. Here the mass accretion rate as a function of
time is displayed. Courtesy of Patrick Deegan and Graham
Wynn.

of time, enabling us to gain some insight on their
evolution and therefore on the dynamics of the out-
burst. Fig. 9 shows the light curve of these three ob-
jects (from Clarke et al. 2005). A first thing to no-
tice is that the lightcurves of these three prototyp-
ical objects differ substantially between each other:
while V1057 Cyg and FU Ori show a sharp rise to
the high state (with a rise timescale of the order of
1 year), V1515 Cyg shows a much slower rise (∼ 10
years). Once in the high state, while V1515 Cyg and
FU Ori showed a very slow decline in luminosity,
V1057 Cyg has dropped down almost to the origi-
nal state within 10 years. Additionally, V1057 Cyg
and V1515 Cyg have shown some rapid variability
in the high state, while FU Ori has not. Reconciling
such diverse behaviour within a single simple model
is not easy but the limit cycle instability scenario, as
will be discussed below, has managed to some extent
in the challenge. On the other hand, several uncer-
tainties remain, and the evidence in favour of it is
much weaker than in the case of dwarf novae. A big
disadvantage with respect to the case of dwarf no-
vae is that the typical timescale of the outburst for
FU Orionis is much larger than for dwarf novae and
so it is not possible to observe repeated outbursts.
On the other hand, the fraction of observed FU Ori-
onis objects is consistent with each star undergoing
a minimum of ∼ 4 outburst throughout their life
(Hartmann, 1998), which implies a duty cycle of at

least 104 years.
Hartmann and Kenyon (1985) and Kenyon et al.

(1988) have shown how the spectral energy distribu-
tion of FU Orionis objects is to first approximation
consistent with the one expected from a standard
steady state accretion disc (as sketched, for example,
in Fig. 6). Indeed, this is essentially the only clear
case where a disc around a young star displays the
typical emission feature of an active disc. While al-
ternative interpretations have been suggested (e.g.,
Herbig et al. 2003), there is now a general agreement
that the emission in FU Orionis systems is due to an
actively accreting disc. Detailed modeling (Kenyon
et al., 1988) shows that the typical accretion rates
are of the order of 10−4M⊙/yr.

The agreement however only holds at relatively
short wavelengths, in the optical and near infrared,
while in the mid infrared a substantial excess emis-
sion with respect to the expected disc spectrum is
observed. Disc flaring, resulting in a shallower tem-
perature profile (as for passive discs, see above) does
not help much, since in this case it is the emission
from the inner disc (rather than the star) to heat
up the outer disc and the degree of flaring needed to
reproduce the SED is too large (Kenyon and Hart-
mann, 1991). The mid infrared emission is therefore
usually attributed to a dusty envelope (Kenyon and
Hartmann, 1991). Alternatively, if the outer parts of
the disc (beyond ∼ 10 AU) are self-gravitating (see
also below), the outer disc temperature might also
be higher than for a standard disc, and indeed de-
tailed self-gravitating disc models can reproduce the
SED also in the mid infrared (Lodato and Bertin,
2003).

Recent infrared interferometry has played a ma-
jor role in our understanding of FU Orionis objects.
Malbet et al. (1998) and Malbet et al. (2005) have
obtained infrared (H and K) interferometric data
of FU Ori itself, showing that the infrared emission
comes from an extended source (a few AU), con-
sistent with the temperature profile expected for a
disc, and providing possibly the definitive piece of
evidence in favour of an active disc interpretation.
Millan-Gabet et al. (2006) have observed (again, in
the K band) other FU Orionis sources and found
that in general the objects appear more resolved
than would be expected from a simple disc model,
implying emission from relatively hotter gas at
larger distances. This is not inconsistent with the
evidence coming from SED modeling which also
implies a shallower temperature profile. However,
simply changing the temperature power-law index
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Fig. 9. B, V and R lightcurves of FU Ori, V1057 Cyg and V1515 Cyg. From Clarke et al. (2005).

does not reconcile the models with observations
and Millan-Gabet et al. (2006) attribute the excess
emission to a dusty envelope. No attempt to fit the
data with a non power-law temperature profile (as
used, for example, by Lodato and Bertin 2003 for
their SED modeling) has been done. Additionally,
it is worth noting that FU Orionis objects are not
in a steady state, so the use of steady state models
may not be appropriate. Indeed, Clarke et al. (2005)
have shown that time-dependent models provide a
better match to the colour evolution of V1057 Cyg
and of V1515 Cyg at the beginning of the outburst.

So, despite all the caveats above, there is signif-
icant evidence that FU Orionis objects are indeed
actively accreting accretion discs. What about the
outburst mechanism? The limit cycle instability de-
scribed above has the attractive features that (a) it
does provide outbursts with the correct luminosity
amplitude and that (b) it can in principle account
for recurrent outbursts as required by number statis-
tics. More subtly, it is also able to account for the
different rise timescales in the three best studied ob-
jects. As discussed above, the rise timescale corre-
sponds to the time taken for the instability front to
travel through the inner disc. Now, if the instability
is first triggered in the innermost parts of the disc,
it will be the slowly moving outward front that de-
termines the rise timescale, which will be relatively
slow (as for V1515 Cyg), while if for some reason
the instability is triggered at some distance from
the star (of the order of a few tens R⊙), it will be
the fast (‘avalanche’) inward moving front that de-
termines a fast rise time (as for FU Ori and V1057
Cyg). Detailed models of triggered and untriggered
outbursts have been shown to reproduce roughly
this behaviour (Clarke et al., 1989, 1990; Bell et al.,
1995), by imposing some ad hoc triggering event.
Clarke and Syer (1996) have suggested the interest-

ing proposal that the triggering agent might be a
‘hot Jupiter’ embedded in the pre-outburst disc (the
presence of which might also have an observable ef-
fect in the optical and near infrared absorption line
profiles, Clarke and Armitage 2003; Herbig et al.
2003). Detailed models using a planet to trigger the
outburst have been discussed by Lodato and Clarke
(2004) and Clarke et al. (2005), who also provide a
detailed comparison with observations.

The real Achilles’ heel for such limit cycle insta-
bility models for FU Orionis objects is its inability
to reproduce the outburst duration and its duty cy-
cle. As discussed above, the outburst duration is set
by the viscous timescale in outburst at the outer
disc radius at which the instability can propagate.
A simple estimate of this radius can be given by cal-
culating, for a given input Ṁ , the radius at which
the temperature is high enough for partial hydrogen
ionization. For an input rate of 10−6M⊙/yr (needed
to reproduce the outburst amplitude), this radius
turns out to be ∼ 20R⊙ (Hartmann, 1998). Now,
unless the disc viscosity is very low (so that the pa-
rameter α, commonly used to measure disc viscos-
ity, is ≈ 10−3), the viscous timescale at this radius
is much shorter than the tens of years observed as
outburst duration. Actually, the instability front can
overshoot to significantly larger radii (especially in
the case of triggered outbursts) and more detailed
calculations (Lodato and Clarke, 2004) give an outer
propagation radius ∼ 40R⊙, which however, only
slightly improves the situation. Even worse, the duty
cycle of the outburst is determined by viscosity in
the quiescent phase, and even reducing α to 10−4

still results in a duty cycle of the order of a few 103

years, which is only marginally consistent with the
expectations of at least 104 years.

Alternative outburst mechanism have been pro-
posed. For example, Vorobyov and Basu (2005,
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2006) attribute them to the variability associated
with a gravitational instability in a massive disc
(this will be discussed in more detail below in Sec-
tion 8.7). Armitage et al. (2001) invoke a combina-
tion of gravitational instability and the magneto-
rotational instability in layered discs (see Section
8.6). However, a detailed calculation of the resulting
rise timescale and outburst duration in these cases
has not yet been performed. If indeed the origin of
the outburst lies in some form of gravitational in-
stability, then it interesting to note that this would
also naturally produce a non power law tempera-
ture profile that would fit the mid infrared SED and
possibly the resolved interferometric observations
(Lodato and Bertin, 2003).

Yet another possibility is an enhancement in ac-
cretion rate as a consequence of binary interaction
with a companion star (Bonnell and Bastien, 1992),
a hypothesis reinforced by the recent observations
of a companion to FU Orionis itself (Wang et al.,
2004). However, the distance of the companion in
this case (≈ 200 AU) is so large that its dynami-
cal timescale far exceeds all the observed outburst
timescales, so it is hard to see how such a distant
companion can cause a sudden rise in luminosity in
a time as short as one year.

In summary, despite the limitations and the dif-
ficulties of the limit cycle instability model for FU
Orionis, at present there has not been any attempt
to provide a detailed alternative model, able to re-
produce the various timescales involved and to fit
the observational data.

8. Disc “viscosity”: the α-prescription and

beyond

Up to now, we have avoided a discussion about
what physical processes are responsible for disc “vis-
cosity” and its expected magnitude. In this way, we
have emphasised what can be done without a de-
tailed knowledge of the viscosity (for example, the
SED of an actively accreting disc) and especially
what cannot be done (viscosity is essential in setting
the relevant timescale of evolution of discs, so evo-
lutionary models, as we have seen for FU Orionis,
do depend strongly on the nature of viscosity).

The issue of viscosity has historically been a key is-
sue in accretion disc physics. As it was early realized,
and as we will show here below, standard kinetic
viscosity due to collisions between gas molecules is
far too low to account for the transport of angu-

lar momentum needed in observed accretion discs.
For decades, modelers have relied on a very simple
and successful parameterization of viscosity in terms
of an unknown dimensionless parameter, called α
(Shakura and Sunyaev, 1973). This α-prescription
has been widely used, and we have also referred to
it above, when we needed to give an order of mag-
nitude estimate of viscosity. From the beginning of
the ’90s, increased computer power made it possi-
ble to run complex hydrodynamical and magneto-
hydrodynamical simulations of discs. These made
possible a careful examination of the fluid instabil-
ities the disc might be subject to, and finally gave
an idea of the long-sought nature of angular mo-
mentum transport in discs. At present, this issue is
probably the key outstanding research topic in the
theoretical modeling of accretion discs.

It is commonly thought that accretion discs are
turbulent and that transport arises from the fluctua-
tions associated with turbulence. Turbulence is sup-
posed to arise as a consequence of the development
of MHD instabilities, and in particular of the so-
called magneto-rotational instability (MRI, Balbus
and Hawley 1991), that will be briefly summarized
below and discussed in more detail in the Chapter by
Ferreira. While there is still some debate on whether
pure hydrodynamic discs can be non-linearly turbu-
lent (Richard and Zahn, 1999; Mukhopadhyay et al.,
2005; Lesur and Longaretti, 2005; Ji et al., 2006),
it is highly likely that some other physical process
rather than pure hydrodynamics has to be at work,
in order for significant transport to take place. If
discs are relatively massive (as can happen in the
early stages of star formation) gravitational insta-
bilities might provide the required mechanism. In
recent years there has been a substantial effort in
describing the evolution of gravitationally unstable
discs, and I will summarize the recent progress on
this issue in section 8.7 below.

8.1. The magnitude of collisional viscosity

Before embarking on a discussion on ‘anomalous’
viscosity and what might cause it, it is instructive to
see why ‘standard’ viscosity, which we are familiar
with, does not provide enough stress to power disc
accretion. In order to see this, let us consider the
viscous timescale introduced above, tν = R2/ν. It
is convenient to express this quantity in units of the
dynamical timescale tdyn = Ω−1:
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tν
tdyn

=
R2Ω

ν
. (63)

Note that the ratio above is nothing other than the
Reynolds number Re of the flow. Standard, colli-
sional viscosity can be expressed as the product of
the typical random velocity of molecules (that will
be of order of the sound speed cs) and the colli-
sional mean free path λ = 1/(nσcoll), where n is the
number density of the gas and σcoll is the collisional
cross-section. We then have:

λ =
1

nσcoll
=

µmp

ρσcoll
=

(

µmp

Σσcoll

)

H, (64)

where mp ≈ 10−24cm is the proton mass, µ is the
average molecular weight (we can take it to be ≈
2, for simplicity) and where ρ and Σ are the usual
volume and surface density of the disc, respectively.
Now, substituting ν = λcs in equation (63), we get:

tν
tdyn

=

(

Σσcoll

µmp

)(

H

R

)−2

. (65)

To give some ideas of the numbers involved, let us
assume that the collisional cross section is simply of
the order of the size of an hydrogen molecule σcoll ≈
10−16 cm2. In order to give a rough estimate of the
disc surface density let us assume that the disc mass
is ≈ 0.005M⊙ and that the disc size is ≈ 50 AU,
which gives us Σ ≈ 0.005M⊙/(50AU)2 ≈ 10g/cm

2
.

Inserting this numbers in Eq. (65), and also assum-
ing that H/R ≈ 0.1, we get tν/tdyn ≈ 1011. Since the
dynamical timescale is of the order of a few years,
the above estimates would lead to the conclusion
that in order to accrete a disc of mass 0.005M⊙ from
a distance of 50 AU, it would take much longer than
the Hubble time! Clearly, the magnitude of viscos-
ity must be much larger than the simple collisional
one estimated above.

8.2. Turbulent transport

As remarked above, the ratio of the viscous
timescale to the dynamical one is also equal to the
Reynolds number of the flow. The fact that colli-
sional viscosity gives such a large estimate of this
ratio also implies that the Reynolds number of the
accretion flow is correspondingly large. Now, it is
well known that for high Reynolds numbers a flow
is subject to the development of turbulence and we
should therefore expect the flow in an accretion disc
to be highly turbulent. In these conditions, viscos-
ity can be much higher because in this case angular

momentum is exchanged not through collisions of
individual gas molecules, but by the mixing of fluid
elements moving around in the disc due to turbu-
lence. The typical length-scale of such motion can
be several orders of magnitude larger than the col-
lisional mean free path and consequently transport
becomes much more effective.

It is instructive to rewrite the fundamental equa-
tions of non-viscous hydrodynamics, separating the
mean flow (let us call v the mean velocity) from the
fluctuating quantities (as done, for example, in Bal-
bus and Hawley 1998). It is then possible to show
that the angular momentum equation can be rewrit-
ten as:

∂

∂t
(ΣRvφ) +

1

R

∂

∂R
(RvRΣRvφ) =

−
∑

i

1

R

∂

∂R

(

R2Σ〈u(i)
R u

(i)
φ 〉
)

. (66)

In Eq. (66) the angle brackets indicate a vertical
and azimuthal average and the summation operates
over the various fluctuating fields that contribute to
the stress. In the simplest case of a purely hydro-
dynamic flow, the only relevant field is the velocity
fluctuation field, and this contribution to the stress
tensor (called the “Reynolds” stress) is:

T Re
Rφ = −Σ〈uRe

R uRe
φ 〉, (67)

where uRe is simply the velocity fluctuation. In the
case of a magnetized disc, the magnetic field B pro-
vides another source of transport, leading to the so-
called “Maxwell” stress:

T M
Rφ = Σ〈uA,RuA,φ〉, (68)

where uA = B/
√

4πρ is the Alfvén velocity. Finally,
if the disc is massive enough that its self-gravity is
non-negligible, the perturbed gravitational field g

provides yet another source of transport, in the form:

T g
Rφ = −Σ〈ug

Rug
φ〉, (69)

where ug = g/
√

4πGρ (Lynden-Bell and Kalnajs,
1972). Equation (66) shows that in the presence
of a non-zero correlation between the radial and
azimuthal components of any of the fluctuating
fields described above, angular momentum can be
removed from the mean flow. Indeed, comparing
Eq. (66) to Eq. (31), it is readily seen that such
correlations play exactly the same role as a vis-
cous stress tensor as concerns angular momentum
conservation.
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8.3. Turbulent ‘viscosity’?

We have seen above that the stress provided by
turbulent fluctuations plays exactly the same role
as a viscous stress from Navier-Stokes equations. Is
this enough to let us speak about a ‘turbulent viscos-
ity’? Actually, before being able to do so, we should
answer two important questions.

First of all, viscosity is a dissipative process which
of course leads to energy dissipation (and indeed
it is due to such dissipation that actively accreting
discs are luminous). In the fluctuations dynamics de-
scribed in the previous section, energy is being taken
from the mean flow and given to the fluctuations,
without really being dissipated. So, before really
speaking about viscosity, we have to (a) make sure
that for a given angular momentum flux the amount
of energy transferred to the fluctuations is the same
as would be dissipated in a viscous process (Eq. (50))
and (b) we have to address the issue of whether
fluctuations are readily dissipated locally or instead
whether they are able to travel significantly before
being dissipated. The issue has not yet been set-
tled completely. Balbus and Papaloizou (1999) have
shown that while for Reynolds and Maxwell stresses
the answer to question (a) above is positive, in the
case of gravitational stresses some other ‘anomalous’
energy fluxes come into play. On the other hand,
Gammie (2001) argues that such ‘anomalous’ fluxes
are negligible, at least under some conditions (see
Section 8.7 below for further details). The answer
to question (b) above is even more subtle and there
is no simple and general answer to it. Clearly, only
large scale numerical simulations can give an answer
to this question. In this respect, it is somewhat re-
assuring that most simulations performed to date
(whether for magnetized or self-gravitating discs)
do not find significant degree of non-local transport,
thus suggesting that ‘turbulent’ transport does be-
have to first approximation as an ‘anomalous viscos-
ity’.

A second subtlety is related to the fact that the
viscous stress tensor is proportional to the rate of
strain (RΩ′), while Eqs. (67)-(69) do not immedi-
ately show this relationship. Indeed, it has been ar-
gued (Pessah et al., 2006) that (at least for magnetic
stresses) this is not the case. This, however, would
only have a significant effect in cases where the rota-
tion law departs significantly from a Keplerian pro-
file (or, more exactly, when |Ω′| is significantly dif-
ferent than Ω/R), which might occur in the presence

of large pressure gradients, for example in a bound-
ary layer, close to the star.

8.4. The α-prescription

To summarize the discussion above, while the de-
bate is still not settled, there is as yet no conclu-
sive evidence that for most applications (for exam-
ple, for calculating the blackbody spectrum of an
active disc) it would be incorrect to take the sim-
ple assumption that transport is due to some kind
of ‘anomalous’ viscosity, the magnitude of which is
unknown.

How can we then estimate the magnitude of such
viscosity in a simple way, based on fundamental
physical arguments? Such an estimate has been pro-
vided in a seminal paper by Shakura and Sunyaev
(1973). The argument is very simple and draws from
the fact that the stress tensor has the physical di-
mension of a pressure, that is a density times the
square of a velocity (as can be easily seen from Equa-
tions (67) to (69), keeping in mind that these equa-
tions refer to a vertically integrated stress). The sim-
plest assumption is then to take the stress tensor
to be just proportional to the vertically integrated
pressure Σc2

s :

TRφ =
d ln Ω

d lnR
αΣc2

s , (70)

where d ln Ω/d lnR (∼ -3/2 for a quasi Keplerian
disc) is just a number (to remind us that the vis-
cous stress is proportional to the rate of strain), and
where α is the proportionality factor between the
stress tensor and the pressure.

Another way of expressing the α-prescription is
by considering the kinematical viscosity ν. Indeed,
Eq. (70) is equivalent to:

ν = αcsH. (71)

This form of the α-prescription offers a simple way
to put some constraints on α. The magnitude of tur-
bulent viscosity is given roughly by ν ∼ v̂l, where
l is the typical size of the largest eddies in the tur-
bulent pattern and where v̂ is the typical turbulent
velocity. Now, it is unlikely that the turbulence will
be highly supersonic, since otherwise it would easily
dissipated through shocks and we thus have v̂ . cs.
An upper limit to the size of the largest eddies l is
obviously given by the disc thickness H (if we con-
sider an isotropic viscosity). These two upper limits,
taken together, clearly imply that α < 1.
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Now, it is important to point out what the α-
prescription is not. It is not a theory of viscosity
in accretion discs. It is just a simple parameteriza-
tion based on dimensional analysis. By introducing
the α-prescription, we have not gained any insight
in what is the disc viscosity. Without it, we do not
know what the kinematical viscosity ν is, while by
using it we are left without knowing what α is. We
have simply moved our unknowns from viscosity to
α. A way to look at the α-prescription is that it is
just a measure of the disc internal stresses in units of
the local pressure. It is in this sense that it is mostly
referred to recently, and the numerical simulations
results are often discussed in terms of the ‘equiva-
lent α’ produced by the turbulence. Another impor-
tant thing to stress is that while α is often taken to
be a constant, it obviously does not need to be so,
and indeed in general it can be a function of radius,
density, temperature, ionization level, etc...

As to the magnitude of α, the arguments above
enable us to put an upper limit to it α . 1, but this
is of course a very loose constraint. A way to pro-
ceed is to calibrate α based on the few cases where
some observed evolutionary behaviour can be com-
pared to theoretical models. By far, the best con-
straints on α come from observations of dwarf novae
outbursts (Lasota, 2001) where, as discussed above,
the limit cycle instability provides a good theoreti-
cal fit to the observations and the various timescales
of the outburst are indeed strongly dependent on α.
This kind of analysis leads to value of α ≈ 0.1. An-
other way of estimating α comes from comparing
the similarity solutions described in Section 4.7 with
observations of a statistical sample of discs at dif-
ferent ages, assuming that we know the initial size
distribution. This has been done by Hartmann et al.
(1998) (and more recently by Andrews and Williams
2007) and the observations seem to require a value
of α ≈ 0.01. While this is lower than that inferred
for dwarf novae outbursts, these values might not be
inconsistent with each other, especially if ‘viscosity’
is driven by MHD instabilities, which are expected
to be more effective in the hot and highly ionized en-
vironment of dwarf novae than in a cold disc around
a young star. On the other hand, as has been noted
above, modeling FU Orionis outbursts in terms of a
limit cycle instability requires much lower values of
α ≈ 10−4 − 10−3. Now, while clearly this represents
a big stumbling block for the application of the limit
cycle instability to FU Orionis object, on the other
hand it is important to stress that since such objects
are essentially the only protostellar discs whose lu-

minosity is clearly dominated by accretion, it would
be highly valuable to develop consistent accretion
models for them, as this would give the best insight
on the magnitude of viscosity in this context.

8.5. Hydrodynamic instabilities?

Now, having seen what the magnitude of viscos-
ity is expected to be based on the observational ev-
idences for a number of different cases, we should
turn to theory and ask what can be provided by de-
tailed modeling of turbulent discs. First of all, how-
ever, we should ask why should a disc be turbulent
at all. We have seen above that the Reynolds number
in the disc is expected to be very high, but this does
not by itself imply that the disc is turbulent, unless
there is an available energy source to keep the tur-
bulence from decaying. In other words, we need to
find some suitable instability able to extract energy
from the rotational motion and keep the turbulence
active.

The problem here is that purely hydrodynamic
discs are expected to be linearly stable. In order to
look for a stability condition, we consider standard
perturbation theory and follow the evolution of a
perturbation whose time and spatial dependence is
in the form exp[i(ωt − k · x)], where ω is the oscil-
lation frequency and k is the wavenumber. If ω has
a negative imaginary part, the perturbation grows
exponentially and instability occurs. The evolution
of the perturbation can be obtained from the disper-
sion relation, which gives an expression for ω. For an
incompressible, purely hydrodynamic rotating shear
flow, the dispersion relation reads:

ω2 = κ2, (72)

where κ is the epicyclic frequency, given by:

κ2 =
2Ω

R

d(ΩR2)

dR
, (73)

and instability occurs whenever κ2 < 0 (this is
the well-known Rayleigh criterion for instability) 3 .
Now, κ2 is proportional to the radial derivative of
the specific angular momentum, and in most astro-
physical discs this is an increasing function of radius
(in particular, for Keplerian discs, ΩR2 ∝ R1/2).
This therefore means that purely hydrodynamic
discs are generally linearly stable. As such they

3 Note that for a Keplerian disc the epicyclic frequency κ =
Ω.
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are generally not thought to be able to provide a
sustained source of energy to power turbulence and
transport.

Even if the disc is linearly stable, it might turn
out to be non-linearly unstable. Here, the situa-
tion is more complicated and the debate is still on-
going. Several authors have considered the gener-
ation and transport properties of vortices in discs
(Godon and Livio, 2000; Klahr and Bodenheimer,
2003; Umurhan and Regev, 2004; Johnson and Gam-
mie, 2005) but the general result is that while it
is possible to induce substantial transport through
vortices, this generally decays with time.

8.6. The magneto-rotational instability

The situation however changes drastically in the
case in which the disc is threaded by a small mag-
netic field. In this case, a new instability, called
the magneto-rotational instability (MRI), can arise
(Balbus and Hawley, 1991). Several reviews have
been recently dedicated to the MRI (Balbus and
Hawley, 1998; Balbus, 2003) and it will be treated
more extensively in the Chapter by Ferreira. Here, I
will only briefly summarize its most salient features.

Despite being originally described in the late ’50s
(Velikhov, 1959; Chandrasekhar, 1960, 1961), this
fundamental instability relevant to virtually any ro-
tating shear flow under the effect of a magnetic
field had never being considered as a possible source
of transport in accretion discs until the ’90s, when
it was numerically shown by Hawley and Balbus
(1991) that it could lead to significant transport in
accretion discs, in the weak field case. Actually, the
final confirmation of the importance of this instabil-
ity only came a few years later, when it was shown
by Hawley et al. (1995) that the same instability
could lead to a non-decaying turbulence, with an as-
sociated non-vanishing stress.

A simple interpretation of the MRI is as follows.
Consider the situation shown in Fig. 10. If dissipa-
tive effects are negligible (for example, if the fluid has
no resistivity), the magnetic field lines are ‘frozen’
into the fluid, in the sense that along the motion of
a fluid element, threaded by a magnetic field line,
the field line stays attached to the element and is
carried along by the flow. Now, consider two fluid
elements (A and B) orbiting in the disc at the same
radius and connected by a magnetic field line . Dis-
place slightly the two elements in the radial direc-
tion (bottom of Fig. 10). Due to differential rota-

Fig. 10. Sketch illustrating the geometry leading to the MRI.
Two fluid elements A and B are connected by a magnetic
field line. Due to differential rotation, the field line stretches
and magnetic tension leads to a transfer of angular momntum
from A to B, causing A to sink down to the center and B
to move outwards, further stretching the field line and thus
leading to a runaway evolution.

tion, if dΩ/dR < 0, A moves faster than B, so that
after some time (right in Fig. 10) the field line will
have been significantly stretched. A stretched field
line provides a magnetic tension which slows down
A (removing angular momentum) and accelerates B
(giving angular momentum). Angular momentum is
thus transferred from A to B so that A moves closer
in while B moves outwards (top of Fig. 10), further
stretching the field line and giving rise to a runaway
process.

The stability of an MHD cylindrical flow was
first considered by Velikhov (1959). Later, Chan-
drasekhar (1960) (see also Chandrasekhar 1961)
obtained the dispersion relation for a differentially
rotating flow threaded by a vertical magnetic field.
The Chandrasekhar (1960) dispersion relation is
(cf. the equivalent equation (79) in Balbus 2003):

ω̃4 − ω̃2κ2 − 4Ω2(k · uA)2 = 0, (74)

where uA is the Alfvèn velocity, k is the wave-
number of the perturbation and ω̃2 = ω2−(k · uA)2.
Equation (74) can be easily solved for ω̃2, from
which we can get ω2. A little algebra then shows
that the disc is unstable (i.e., ω2 < 0) whenever:
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(k · uA)2 +
dΩ2

d lnR
< 0. (75)

The interesting thing here is that if we take the
limit of vanishing magnetic field (uA → 0) we do
not recover the Rayleigh criterion for instability, but
rather:

dΩ2

d lnR
< 0, (76)

which (unlike the Rayleigh criterion) is generally
satisfied by most astrophysically relevant discs.

Another interesting thing is that for any given
magnetic field strength, short wavelength perturba-
tions (with correspondingly large wavenumber) can
be stabilized. Indeed, if λ is the wavelength, Eq. (75)
implies that if

u2
A & Ω2λ2 (77)

the fluid would be stabilized. This is why the MRI
is generally considered a weak field (or a large wave-
length) instability. Since the largest wavelength that
can fit in a disc is H = cs/Ω (if we assume that tur-
bulence develops isotropically), we then get that a
supersonic magnetic field, for which uA > cs, is able
to stabilze the flow against the MRI.

While this kind of instability is naturally applica-
ble to accretion around compact objects, where the
accretion flow is hot, some problems might arise for
cold protoplanetary discs, where the ionization level
is low (Fromang et al., 2002). Indeed, in this case,
dissipative effects become important and the mag-
netic field becomes less coupled to the hydrodynam-
ics of the disc. In this case, ‘dead zones’ are expected
to develop, where the MRI is not active and accre-
tion would be shut down. Actually, it has been shown
by Gammie (1996) that cosmic rays can ionize the
upper layers of the disc, thus leading to a so-called
‘layered disc’ where active accretion only occurs on
the uppermost layers while the bulk of the disc stays
inactive. However, Fleming and Stone (2003) show
that even in a layered disc, velocity fluctuations in
the active layers might induce a stress also in the
bulk of the disc.

In the context of young stellar objects, models
of discs where the transport is dominated by tur-
bulence induced by the MRI have been developed
throughout the years by, for example, Steinacker and
Papaloizou (2002), Papaloizou and Nelson (2003)
and Nelson and Papaloizou (2003).

8.7. Gravitational instability

Gravitational instabilities are sometimes consid-
ered unlikely to provide a significant source of angu-
lar momentum transport in discs, mainly because it
is thought that only very massive discs would be self-
gravitating. In fact, as shown in Section 4.4, in order
to give a sizable contribution to the vertical gravita-
tional field, the disc mass only needs to be a fraction
∼ H/R of the central object mass, which means that
if the disc is thin, even a relatively low mass disc can
display some effects connected to self-gravity. As we
will show below, it is for disc masses of the same
order of magnitude that gravitational instabilities
develop. Now, if we take H/R ≈ 0.1 and a central
star of mass M ≈ 0.3M⊙, we then find that even
a disc with a mass as low as Mdisc ≈ 0.03M⊙ can
be subject to gravitational instabilities 4 . Now, such
disc masses are not uncommon (Eisner and Carpen-
ter, 2006) and they would be quite likely especially
at the earliest stages of star formation, where the
mass balance of the protostar-disc system is more
in favour of the disc. Clearly, as accretion proceeds
and the disc mass becomes smaller, the effects of
self-gravity would eventually die away. In any case,
the importance of self-gravity in providing an effec-
tive way of redistributing angular momentum at the
earliest stages of star formation has been recently
clearly recognized (Hartmann et al., 2006).

Most of the recent interest in the dynamics of self-
gravitating discs is also due to the fact that it can
potentially lead to disc fragmentation and so pro-
duce low mass companions to young stars. A model
for giant planet formation based on disc fragmenta-
tion has been put forward especially by Boss (2000)
(see also Boss 2006; Mayer et al. 2002; Cai et al.
2006; Mayer et al. 2007). It turns out that the possi-
bility of disc fragmentation due to gravitational in-
stability depends strongly on the cooling rate of the
disc, as I will discuss below, and therefore most of
the research in this field aims at obtaining realistic
estimates of the cooling processes in the disc. A re-
cent review focusing on this particular aspect can
be found in Durisen et al. (2007). Here, we will put
instead more emphasis on the role of self-gravity in
providing a source of transport to power the accre-

4 Note that in the case of accretion discs in Active Galactic
Nuclei the aspect ratio is much smaller, H/R ≈ 10−3, so
that discs with even lower masses relative to their central
object are gravitationally unstable.
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tion process (a thorough discussion of these aspects
can also be found in Lodato 2008).

Gravitational instability in a disc is essentially a
small modification of the standard Jeans instabil-
ity in a three-dimensional homogeneous fluid. In the
standard Jeans stability analysis, the natural ten-
dency for collapse associated with self-gravity is bal-
anced by pressure gradients. Now, pressure gradi-
ents are particularly effective at small wavelengths
and tend to vanish for very large wavelengths. It
is therefore not surprising that a system becomes
Jeans unstable if it has a size larger than a funda-
mental lengthscale, called the Jeans length (that we
have already encountered in Section 2).

In the case of a rotating disc, the situation gets
more complicated not only because of the different
geometry, but especially because the disc rotation
provides another stabilizing effect, which in this case
is more effective at large wavelengths. The combina-
tion of a short wavelength stabilization factor (pres-
sure) and a large wavelength one (rotation) makes
it possible, under appropriate conditions, to render
the disc stable at all wavelengths. This is clearly
seen when one considers the dispersion relation for
tightly wound axi-symmetric disturbances in an in-
finitesimally thin, rotating disc (cf. Toomre 1964 in
the case of a stellar disc, see also Binney & Tremaine
1987 and Bertin 2000 for the fluid case):

ω2 = c2
sk

2 − 2πGΣ|k| + κ2, (78)

where, as above, ω and k are the perturbation fre-
quency and wavenumber and κ is the epicyclic fre-
quency. In Eq. (78), the first term on the right hand
side corresponds to the stabilizing effect of pressure,
the second is the de-stabilizing effect of self-gravity,
while the third is the stabilizing effect of rotation.
Eq. (78) is a simple quadratic equation in k and it
is straightforward to see that ω2 < 0 if and only if:

Q =
csκ

πGΣ
< 1. (79)

Thus, the dimensionless parameter Q plays an im-
portant role in determining whether a gaseous disc
is gravitationally unstable or not. We can now ask
how massive should the disc be in order to be grav-
itationally unstable. This is easily derived from Eq.
(79) in the case where Mdisc ≪ M :

Q ≈ csΩ

πGΣ
=

cs

ΩR

GM

πGΣR2
≈ H

R

M

Mdisc(R)
, (80)

which then shows that, as anticipated, in order for
Q ∼ 1, we should require that (Mdisc/M) ∼ (H/R).

Fig. 11. Surface density of a self-regulated self-gravitating
disc. In this case the mass ratio between the disc and the
star was Mdisc/M = 0.1. From Rice et al. (2005).

As we have seen above, disc masses of this order of
magnitude might not be uncommon and it is there-
fore likely that young circumstellar discs are gravi-
tationally unstable.

Having established that self-gravitating discs are
linearly unstable, we should now ask what is the
non-linear evolution of the instability and whether
it can lead to a sustained transport of angular mo-
mentum. The stability criterion, Eq. (79) offers a
natural way to describe this. Indeed, we should note
that the stability parameter Q is proportional to the
sound speed (and hence to temperature), so that
colder discs are more unstable. Now, let us consider
a disc which is initially hot, so that Q ≫ 1 and
the disc is stable. In the absence of other trans-
port mechanisms (and neglecting stellar heating),
the disc cools down due to radiative cooling until
eventually Q ≈ 1. At this stage, the disc develops a
gravitational instability in the form of a spiral struc-
ture, that leads to angular momentum transport,
and ultimately to energy dissipation and heating.
In turn, the stability condition works like a kind of
‘thermostat’, so that heating turns on only if the
disc is colder than a given temperature. If the ‘ther-
mostat’ works, we should then expect the instabil-
ity to self-regulate in such a way that the disc is al-
ways kept close to marginal stability, and thus a self-
gravitating disc will evolve to a state where Q ≈ Q̄,
where Q̄ is a constant of order unity (physical pro-
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cesses of this kind also operate in the the dynamics
of spiral galaxies, Bertin and Lin 1996). Analytical
models of such self-regulated discs have been con-
structed and described by Bertin (1997), Bertin and
Lodato (1999) and Lodato and Bertin (2003). The
effectiveness of such a self-regulation mechanism has
been shown (at least for relatively light discs, with
Mdisc/M . 0.1) by Lodato and Rice (2004, 2005),
who have performed global hydrodynamical simu-
lations of self-gravitating discs in the presence of
cooling. These simulations indeed show that after
an initial transient the disc settles down in a quasi-
steady state, characterised by the presence of a spi-
ral structure (to provide a source of transport and
heating), and which only evolves secularly, on the
viscous timescale. Fig. 11 shows a snapshot of one
such simulation, where the spiral structure is clearly
visible. In such quasi-steady state, the radial profile
of Q is indeed found to be remarkably constant and
close to unity.

What about the transport induced by gravita-
tional instabilities? Here the very important point to
remember is that this is strongly dependent on the
effective cooling rate. This is a simple consequence
of the self-regulation process described above. For
a given cooling rate, the disc will try and provide
(through the development of gravitational instabil-
ities) a balancing heating term, otherwise the disc
would cool down further and become more unsta-
ble, thus increasing the amplitude of the perturba-
tion and the resulting stress and energy dissipation.
Thus, once in a self-regulated state, not only does
the temperature of the disc settle to a value such
that Q ≈ 1, but also the amplitude of the spiral
structure induced by gravitational instability has to
provide a stress large enough to balance the external
cooling rate. Of course, in order to reproduce such
behaviour in numerical simulations, as one might
expect, one should go beyond a simple isothermal
equation of state, as done in the pioneering work of
Laughlin and Bodenheimer (1994). The importance
of thermodynamics in the development of gravita-
tional instabilities was first noted in the simulations
by Pickett et al. (1998) and Pickett et al. (2000).
However, it was not until Gammie (2001) that the
connection described above was made explicit. Ac-
tually, we can also make a further step forward if
we assume that the transport induced by gravita-
tional instabilities can be described in terms of a
‘local’ viscosity (i.e. if we neglect possible non-local
energy transport, that might in principle occur, see
Balbus and Papaloizou 1999 and discussion in sec-

tion 8.3 above). In this case, the thermal timescale
in the disc is closely related to the viscosity param-
eter α through the requirement of thermal equilib-
rium (Eq. (59)). In thermal equilibrium the thermal
timescale is equal to the cooling timescale tcool, and
we therefore have:

α =
4

9γ(γ − 1)

1

tcoolΩ
. (81)

The strength of the torque induced by gravitational
instabilities has been measured from numerical sim-
ulations in several papers (Gammie, 2001; Lodato
and Rice, 2004, 2005; Mejia et al., 2005; Boley et al.,
2006) and the relation described in Eq. (81) above
has been confirmed both in cases where tcoolΩ is a
constant (Gammie, 2001; Lodato and Rice, 2004)
and in cases where it is not (Boley et al., 2006). This
is also a confirmation that, at least in the cases con-
sidered in these papers (with some exceptions, see
below), the transport induced by gravitational in-
stabilities can be relatively well described in terms
of a ‘local’ process.

From the discussion above, it would then ap-
pear that in principle it can be possible to produce
through gravitational instabilities a stress with an
effective α much larger than unity. This would be the
value predicted by equation (81) for tcool ≪ tdyn =
Ω−1. Actually, it turns out that this is not the case.
Gammie (2001) has shown that if tcool . 3Ω−1, the
disc, rather than achieving the above-mentioned
self-regulated state, undergoes fragmentation. Rice
et al. (2005) (see also Clarke et al. 2007) have later
shown that the actual fragmentation boundary is
dependent on the ratio of specific heats γ and ranges
between tcool = 6Ω−1 and tcool = 13Ω−1. Also this
behaviour is easily understood. Indeed, the growth
rate of the instability is of the order of the dy-
namical timescale, and therefore for cooling times
shorter than that, the disc has no time to develop
the instability and reach thermal equilibrium, and
collapse becomes inevitable. The dependency of the
fragmentation threshold on γ found by Rice et al.
(2005) offers another interpretation of the same
phenomenon. It turns out, that for any value of γ
the fragmentation boundary always occurs at the
same value of α ≈ 0.06. It thus appear that gravita-
tional instabilities in a steady state cannot provide
a stress larger than α ≈ 0.06. If a larger stress is re-
quired in order to reach thermal equilibrium, then
the disc will fragment.

The natural question at this stage is whether the
cooling time in real discs is fast enough to allow frag-
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mentation. This would then lead to a possible route
to the formation of massive planets or low-mass stel-
lar companions around a young star. Unfortunately,
it turns out that, for realistic estimates (Rafikov,
2005) the cooling timescale is far too large, except
possibly in the outer disc, at distances of the order
of 100 AU from the star. This would then preclude
the formation of giant planets through disc fragmen-
tation, but would possibly allow for the formation
of low-mass companions (in the brown dwarf mass
range) at large separations (Lodato et al., 2005; Sta-
matellos et al., 2007). However, the issue of what is
the cooling timescale in discs around young stars is
not yet settled. The role of convection in the pro-
cess has been sometimes discussed (see Boss 2004
and Rafikov 2007 for opposite views). Simulations
which use a more realistic opacity prescription seem
to result in an enhanced tendency for fragmenta-
tion (Johnson and Gammie, 2003) and certainly a
detailed description of the evolution of the instabil-
ity in the presence of strongly temperature depen-
dent cooling is still lacking. Additionally, it has been
sometimes suggested that the effect of an impulsive
interaction with a stellar companion might induce
fragmentation in massive discs (Boffin et al., 1998;
Boss, 2006), but recent simulations tend to show the
opposite result (Mayer et al., 2005; Lodato et al.,
2007).

Before concluding, let us spend a few more words
on the issue of locality, also in connection with
the limiting values for the effective α provided by
gravitational instabilities described above. It is well
known from studies of the dynamics of spiral galax-
ies that if a disc is massive, then it will rapidly
develop violent, bar-like instabilities (Ostriker and
Peebles, 1973; Shlosman et al., 1989). Clearly such
behaviour is not at all local and the transport as-
sociated with it can be much faster than viscous.
However, most of the global simulations described
above (performed by different groups with different
numerical schemes) have not shown the develop-
ment of a strong large-scale coherent structure.
This is due to the fact that these simulations usu-
ally have focussed on relatively low mass discs (with
Mdisc/M⋆ . 0.1). Actually, some of the numerical
investigations mentioned above (Lodato and Rice,
2004, 2005) did reveal a change in behaviour when
moving from light to massive discs, indicating an
increasing role of global effects. First of all, the
typical wavelength of the spiral structure appears
to increase with increasing disc mass, and for disc
masses Mdisc/M & 0.1 − 0.2 it can become compa-

rable with radius, clearly indicating that the local
description would break down (Lodato and Rice,
2004). Indeed, such massive discs appear to be un-
able to reach a quasi-steady self-regulated state,
even for relatively long cooling time. In this case,
the disc is subject to large-scale, global instabili-
ties (but not in the form of a bar), which show a
highly variable temporal behaviour, and can lead
to momentarily high values of α (in excess of the
limiting values found for light discs). Such bursts
of enhanced activity are recurrent and only last
for timescales of the order of the dynamical time
before decaying (and have sometimes been consid-
ered as a possible cause of FU Orionis outbursts,
Vorobyov and Basu 2005). During such episodes,
the disc is not in thermal equilibrium and it is not
possible to compare the stress to the expectations
based on a viscous model. Whether global energy
transport does occur in these cases has not yet been
investigated.

9. Challenges for the future

As we have seen above, studies of accretion disc
dynamics have made significant progress since the
early seminal investigations by Shakura and Sun-
yaev (1973) and Lynden-Bell and Pringle (1974). In
particular, the increased computing power in the last
fifteen years has made it possible to run numerical
simulations of accretion discs, with ever increasing
complexity. While until the ’80s the origin of angu-
lar momentum transport in accretion discs was only
discussed qualitatively, we now have the means to
explore this issue quantitatively and to give more
precise estimates of the magnitude of the internal
disc stress. However, many issues still remain unre-
solved.

For example, as we have seen above, the interpre-
tation of FU Orionis objects in terms of a limit cy-
cle instability still faces some difficulties and to date
no alternative theory has been fully developed. It is
worth noting here the extreme importance of such
objects in the context of investigating accretion on
to young stars. FU Orionis objects are essentially the
only objects whose emission is clearly dominated by
accretion and which show a significant time evolu-
tion. As such, they are an ideal laboratory to study
the accretion process and to place constraints on the
magnitude of disc viscosity (analogously to the case
of dwarf novae in the galactic binary case).

At a more fundamental level, while we can now
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state with confidence that MHD instabilities, and in
particular the MRI, plays an important role in de-
termining the disc viscosity, numerical simulations
have not reached a conclusive answer to what could
be its magnitude. As pointed out by King et al.
(2007), observational evidences from dwarf novae in-
dicate that α ≈ 0.1, while most numerical simula-
tions tend to get values which are at least one order
of magnitude smaller. The numerical results appear
to depend significantly on the geometry and on the
magnitude of the imposed net magnetic field, and
have probably not reached numerical convergence.
In particular, it is difficult to model accurately very
thin discs, while resolving fully the vertical struc-
ture, and in many cases simulations are only per-
formed in a local “shearing box” approximation,
which prevents the development of large scale per-
turbations. While it is true that observations of discs
around young stars seem to imply smaller values of
α with respect to the dwarf novae case, here we also
have to take into account the additional complex-
ity resulting from non-ideal MHD, since dissipative
effects in the colder circumstellar discs are likely to
reduce the effectiveness of the MRI.

We have seen above the large uncertainties on the
non-linear outcome of gravitational instabilities. In
this context, it is the thermodynamics of the discs
that plays a major role in setting the saturation am-
plitude of the instability and therefore most studies
are now concentrating on providing accurate esti-
mates of the cooling rates, and the goal is eventually
to be able to run reliable radiative transfer hydro-
dynamics simulations.

Finally, most theoretical studies on transport in
accretion discs have focussed on ‘planar’ discs, so
that the whole disc lies in the same plane. On the
other hand, interactions with companion stars can
easily induce a relatively large warp in the disc
and such warped discs are often observed (Chiang
and Murray-Clay, 2004; Akeson et al., 2007). Now,
disc warping can provide significant dissipation and
transport of angular momentum (Papaloizou and
Pringle, 1983; Pringle, 1992; Lodato and Pringle,
2007) and such effects have been investigated only
rarely (Larwood et al., 1996; Larwood and Pa-
paloizou, 1997). The study of such non-planar discs
is still a vast and largely unexplored territory.
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