The spin-axes orbital alignment within the eclipsing binary system V1143 Cyg using the Rossiter-McLaughlin effect

Simon Albrecht, Sabine Reffert, Ignas Snellen, Andreas Quirrenbach and David S. Mitchell

Sterrewacht Leiden

1. June 2007

Stellar rotation axes: Why care?

The orientation of stellar rotation axes relative to the orbital spin axes might shed new light on questions of:

- Binary/planetary system formation
- Binary/planetary system evolution

How: Rossiter-McLaughlin (RM) effect

\rightarrow Light integrated over part of the disk
\rightarrow Radial velocity anomaly
\rightarrow Function of the orientation of the rotation axis
\Rightarrow spatially resolved information on the stellar surface scales

How: Rossiter-McLaughlin (RM) effect

- First discovered: β Lyrae (Rossiter 1924) and Algol (McLaughlin 1924)
- Recently the effect has been observed for transiting planets (e.g. Queloz 2000)

Fig. 2
Rossiter 1924

System: V1143 Cygni

- Well studied system with two F5V stars
- Bright $\left(\mathrm{V}_{\text {mag }}=5.9\right)$
- Period $=7.64$ days
- High eccentricity ($e=0.54$)
- Measured apsidal motion does not fully agree with the expected apsidal motion

Observations

Observations at the Lick Observatory:

- 0.6 m CAT telescope \& Hamilton spectrograph
- Primary eclipse (≈ 4 hours) 9 observations
- Secondary eclipse (≈ 8 hours) 11 observations
- Out of eclipse 26 observations

Broadening function (BF)

We want:

High S/N absorption line:

- Orbital velocity
- Stellar rotation
- Velocity fields on the stellar surface
- Limb darkening
- Possible covering by companion

We have:

Spectra of both stars:

Broadening function (BF)

Spectra:

Wavelength

Kernel/BF:

Velocity space

Wavelength

Use of : Singular Value Decomposition (SVD) (Rucinski 1998)

- Template: Deconvolved spectrum of HD222368
- Conditioning of matrix consisting of the shifted template
- Suppress influence of noise

Broadening function (BF)

Template \& BF represent the observed spectrum

Outside of eclipse:

Challenge: Too much light

Velocity space
double star:

2 methods

1. Influence of the foreground star is subtracted: 'center' is used.
2. The profile of both stars are used: 'shape' is used

Method 1: Center

1. Obtain orbital parameter from out of eclipse data
2. Extract spectra of components using tomography (William et al. , 1991)
3. Subtract spectra of foreground star
4. Calculation of BF of the eclipsed star
5. Now the RM effect can be calculated

Method 1: BFs secondary eclipse

Method 1: BFs primary eclipse

Method 1: Orbital \& eclipse solution

$$
\overline{\chi^{2}}=0.96
$$

Method 1: Primary eclipse

$$
\beta_{p}=0.5 \pm 4.0\left[{ }^{\circ}\right]
$$

Method 1: Secondary eclipse

$$
\beta_{s}=-3.9 \pm 4.0\left[^{\circ}\right]
$$

Method 2: Shape

1. Simulation of BFs of both stars due to:

- Orbital movement
- Stellar rotation / orientation of rotation axes
- Linear limb darkening
- Macro-turbulence
- (Size of components)
- (Differential rotation)

2. χ^{2} fit of all 46 Observations

Method 2: primary eclipse

Method 2: secondary eclipse

$$
\beta=-5\left[{ }^{\circ}\right]
$$

Method 2: secondary eclipse

Conclusions

- Two methods to obtain the projection of the rotation axes in a double lined binary system
- Spin axes in V1143 Cyg are aligned with the orbital spin \rightarrow expected apsidal motion is unchanged
- Methods can be used in other systems (e.g. DI Herculis)

Results: V1143 Cyg

Parameter	Center		Shape	Andersen (1987) \dagger
	Orbit	Joint fit		Gimenez (1985)^
T0 [JD-2400000]	53536.130 ± 0.002	53536.131 ± 0.002	53536.1317 ± 0.0006	
$K_{p}[\mathrm{~km} / \mathrm{s}]$	88.1 ± 0.04	88.1 ± 0.1	88.01 ± 0.05	$88.2 \pm 0.2 \dagger$
$K_{s}[\mathrm{~km} / \mathrm{s}]$	90.1 ± 0.08	90.1 ± 0.2	89.9 ± 0.1	$91.1 \pm 0.4 \dagger$
e	0.538 ± 0.001	0.538 ± 0.001	0.5378 ± 0.0003	$0.540 \pm 0.003 \dagger$
$\omega\left[{ }^{\circ}\right]$	49.1 ± 0.2	49.1 ± 0.2	49.27 ± 0.05	49.31 ± 0.06 *
$a \sin i\left[\mathrm{R}_{\odot}\right]$	22.67 ± 0.03	22.67 ± 0.03	22.64 ± 0.02	$22.78 \pm 0.08 \dagger$
$\gamma[\mathrm{km} / \mathrm{s}]$	-16.8 ± 0.3	-16.8 ± 0.3	-16.8 ± 0.3	$-16.5 \pm 0.7 \dagger$
$v \sin i_{p}[\mathrm{~km} / \mathrm{s}]$		16.9 ± 1.0	19.6 ± 0.1	$18 \pm 2 \dagger$
$v \sin i_{s}[\mathrm{~km} / \mathrm{s}]$		28.0 ± 5.0	28.2 ± 0.1	$27 \pm 3 \dagger$
$\zeta_{R T} P[\mathrm{~km} / \mathrm{s}]$			3.4 ± 0.1	
$\zeta_{R T} S[\mathrm{~km} / \mathrm{s}]$			3.3 ± 0.1	
$\beta_{p}\left[{ }^{\circ}\right]$		0.5 ± 4.0	0.3 ± 1.5	
$\beta_{S}\left[{ }^{\circ}{ }^{\circ}\right]$		-3.9 ± 4.0	-1.2 ± 1.6	

Orbit V1143 Cyg

Tomography

