Constraining Stellar Evolutionary Tracks with Binaries

by Martin, Peter, Pedro & Jürgen

VLTI Summer School 2007

June 7, 2007

Here are some facts...

- The most important parameter of a star is its mass
- The masses of PMS stars can be estimated from evolutionary tracks

Monteiro et al. 2005

... and some problems!

- Evolutionary tracks depend on model used
- Several different models exist
- ... and give only a rough estimate of the mass

Here are some facts...

- The most important parameter of a star is its mass
- The masses of PMS stars can be estimated from evolutionary tracks

. and some problems!

- Evolutionary tracks depend on model used
- Several different models exist
- ... and give only a rough estimate of the mass

and a solution ?

Of course! - our proposal (for at least a fraction of the problem...)

Constrain and calibrate the evolutionary tracks of Pre-Main-Sequence-Stars.

Main Steps

- Spectroscopic survey of possible candidates by Guenther et al. (2007)
- Interferometry contributes accurate values for:
 - Position Angle
 - Binary Separation
- Combine spectroscopic and interferometric data to extract accurate mass

Spectroscopic survey by Guenther et. al. lists 13 objects suitable for possible VLTI observation.

	spec type	m _K	RA	Dec	type	period
	type	[mag]	(2000.0)	(2000.0)		[days]
HIP50796	K5/WTTS	7.66 ± 0.03	10 22 18.0	-10 32 15	SB1	570
CS Cha	K4/CTTS	8.20 ± 0.03	11 02 26.3	-77 33 36	SB1	≥ 2482
HD97131	F2	7.70 ± 0.02	11 10 34.2	-30 27 19	ST3	134
RXJ1220.6-7539	K2/WTTS	7.93 ± 0.02	12 20 34.4	-75 39 29	SB1	613
MO Lup	K7/WTTS	8.64 ± 0.02	15 24 03.5	-32 09 51	ST3	> 3000
RXJ1534.1-3916	K1/WTTS	8.55 ± 0.02	15 34 07.4	-39 16 18	SB1	> 3000
RXJ1559.2-3814	WTTS	9.34 ± 0.03	15 59 16.1	-38 14 42	SB2	474
GSC 06209-00735	K2/WTTS	8.43 ± 0.02	16 08 14.8	-19 08 33	SB1	2045
NTTS160814-1857	K2/WTTS	7.69 ± 0.02	16 11 09.0	-19 04 45	SB1	145
GSC 06213-00306	WTTS	7.43 ± 0.02	16 13 18.5	-22 12 48	SB2	167
Haro 1-14c	K3/WTTS	7.78 ± 0.03	16 31 04.4	-24 04 33	SB2	591
NTTS162819-2423s	G8/WTTS	7.44 ± 0.02	16 31 20.0	-24 30 04	SB1	89
BS Indi	K0/WTTS	6.57 ± 0.02	21 20 59.8	-52 28 40	SB1	1222

Table from Guenther et al. (2007)

Spectroscopic survey by Guenther et. al. lists 13 objects suitable for possible VLTI observation.

	spec type	m _K	RA	Dec	type	period
	type	[mag]	(2000.0)	(2000.0)		[days]
HIP50796	K5/WTTS	7.66 ± 0.03	10 22 18.0	-10 32 15	SB1	570
CS Cha	K4/CTTS	8.20 ± 0.03	11 02 26.3	-77 33 36	SB1	≥ 2482
HD97131	F2	7.70 ± 0.02	11 10 34.2	-30 27 19	ST3	134
RXJ1220.6-7539	K2/WTTS	7.93 ± 0.02	12 20 34.4	-75 39 29	SB1	613
MO Lup	K7/WTTS	8.64 ± 0.02	15 24 03.5	-32 09 51	ST3	> 3000
RXJ1534.1-3916	K1/WTTS	8.55 ± 0.02	15 34 07.4	-39 16 18	SB1	> 3000
RXJ1559.2-3814	WTTS	9.34 ± 0.03	15 59 16.1	-38 14 42	SB2	474
GSC 06209-00735	K2/WTTS	8.43 ± 0.02	16 08 14.8	-19 08 33	SB1	2045
NTTS160814-1857	K2/WTTS	7.69 ± 0.02	16 11 09.0	-19 04 45	SB1	145
GSC 06213-00306	WTTS	7.43 ± 0.02	16 13 18.5	-22 12 48	SB2	167
Haro 1-14c	K3/WTTS	7.78 ± 0.03	16 31 04.4	-24 04 33	SB2	591
NTTS162819-2423s	G8/WTTS	7.44 ± 0.02	16 31 20.0	-24 30 04	SB1	89
BS Indi	K0/WTTS	6.57 ± 0.02	21 20 59.8	-52 28 40	SB1	1222

Table from Guenther et al. (2007)

But only BS Indi is actually observable with AMBER.

(Actually trinary, but two secondaries are not resolvable with the VLTI)

Features of BS Indi

- Primary: Spectral type K0V
- Secondary: 2 unresolvable M0V type stars
- Major separation: pprox 30 mas
- Minor separation: ≈ 0.2 mas
- Period: 1223 ± 30 days
- Flux ratio: 0.5
- Distance: $43 \pm 3pc$
- H Mag: 7.184
- K Mag: 6.574

Guenther et al. (2007)

Basic Parameters

Observation

- Date: Aug 6th, 2007
- Telescopes: U2 U3 U4
- Calibrator: HD 205935_M04

Basic Parameters

Observation

- Date: Aug 6th, 2007
- Telescopes: U2 U3 U4
- Calibrator: HD 205935_M04

But...

Large time requirement to get adequate UV coverage with too many useless measurements points

by Martin, Peter, Pedro & Jürgen Constraining Stellar Evolutionary Tracks with Binaries

Alternative Observational Setup

Get sufficient UV-Coverage using low resolution but with high bandwidth at only two short snapshots.

Visibility variations depend on angular separation and λ .

Alternative Observational Setup

Alternative Observational Setup

Requirements

- 5 Minutes integration time per snapshot
- 2 Calibration Observations
- 2 Science Observations
- Total: 200 Minutes of telescope time
- Visitor Mode

From the reduced data we can constrain

- Binary Separation
- Position Angle

Thus get, together with inteferometric data, the masses of BS Indi with

 $m = f(P.A., \rho, \text{spectroscopic data})$