VLTI Proposal:

Search for Circumstellar Disks around Massive Stars

Katie Morzinski, USA Yaroslav Pavlyuchenkov, Germany/Russia Anton Vasyunin, Germany/Russia

> 7 June 2007 VLTI Summer School, Portugal

What is the motivation to find circumstellar disks around high-mass stars?

- Distinguish between non-spherical accretion theory and merging theory for high-mass star formation
- Compare massive star formation/evolution to solartype star formation/evolution
- Determine photo-evaporation time scale / find lifetime of disk / evolutionary stages
- Check whether the disk is in Keplerian rotation
- Determine if massive stars host planets

What are the important VLTI and other λ observable parameters?

- Direct observations
 Inferable
 - Outer disk radius
 - Radius of gap if present
 - Observed asphericity due to inclination
 - K-part of SED
 - Light Scattering off grains
 - Rotational velocity

- Inferable observations
 - Temperature of star
 - Mass/age of star
 - Mass of disk

What challenges do we face?

- Massive stars form in clusters
 - Embedded disk
- Massive stars produce powerful radiation
 Photo-evaporation of disk in short time
- Massive stars are rare
 - Massive stars are distant
 - Smaller sample size

Previous achievements: F. Millour and colleagues have recently detected Keplerian rotation in a disk around B star.

- "First direct detection of a Keplerian rotating disk around the Be star alpha Arae using the VLTI/AMBER instrument"
- Meilland et al. (including Florentin!) A&A accepted Jun. 2006

- alpha Arae
 HD 158427
- Be star

 10 M_{sun}
 d = 74 pc
- MIDI/N
- AMBER/K

Candidate observing targets

- NGC 2024 -IRS2
 - FK5 2000 05 41 43 -01 50.5
 - Late O-type star in cluster
 - Has been observed by Lenorzer et al. 2004 at VLT to get SED from 1 μm to 2.7 mm
 - Model fit to SED: T_{eff} = 25 000 K, R = 10 R_{sun}, log g = 3.67
- IRAS 08576-4334
 - FK5 2000 08 59 25.2 -43 45 46
 - d = 700 pc (W.-F. Thi & A. Bik 2007)
 - 6 M_{sun} -- Early A-star or late B-star; Assuming A0
 - K mag 9.4, J-K color 4.7
 - Inclination 27 degrees

We determined K-band flux of underlying star based on spectral type

- Estimates based on observations:
 - Peak wavelength of A0 star: 240nm
 - SED of A0 star: Kband flux = 20% peak flux

Observations

🕆 Mandriva 🦯 🔥 🥑 🌛 🕐

1 🗙 3 4 🖷 student 🛛 🗙 < GREG 🗔 c6-disk. p 🗙 OBSERV 🧕 Mozilla-1* 🗖 Evince [* 🗙 XMenu [* 🤪 🛐 🎧 🕺 📵 泪 😳 🖡

UV coverage and Toy Model Predictions

Can we infer the presence of a gap?

Using observations from VLTI in conjunction with data in the literature we will...

- Use toy models of:
 - solid disk
 - ring
 - double-system…

with different parameters

- inner and outer radii
- flux ratios,
- and so on for preliminary analysis of visibility data.

 We will use closure phase to study asymmetry of the disk to verify the predicted inclination of 27 degrees.

Further detailed analysis..

- We will use passive disk model to do detailed radiative transfer modeling of system.
- Based on our findings we will attempt to verify either the nonspherical accretion or the merger scenario for massive star formation.

Conclusions

- VLTI AMBER K-band observations of A0-type star at 300pc in which disk was detected previously in CO and H2O
- Will be able to verify outer radius and perhaps detect gap to inform structure and evolution theories for the disk
- This work will be a major contribution to our PhD thesis and fortunately to the field of star formation!