Planetesimal Formation

Microgravity Experiments Probing Collision Processes in the Solar Nebula

Demerese Salter Leiden Observatory

Team: Daniel Heiβelmann (TU Braunschweig, GER)

Germán Chaparro (Leiden University, NL)

Guido van der Wolk (University of Groningen, NL)

Helen J. Fraser (Strathclyde University, UK)

and Jürgen Blum (TU Braunschweig, GER)

ESA Student Competition

Annual competition since 2000

Scientific Context

Star Formation

Gaseous Pillars in M16, HST (NASA)

Proto-Planetary Disks

The Butterfly Star, HST-NICMOS (NASA)

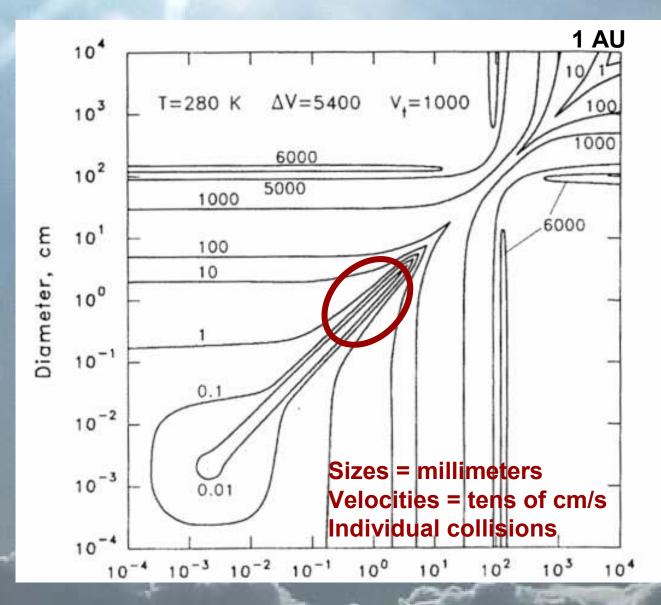
Initial Grain Growth

Blum et al. 1998. Earth, Moon & Planets: 80, 285.

Planets

Image of Earth, Galileo Spacecraft (NASA/JPL

Planetesimal Formation


(The Subject of our Experiment)

81P/Wild 2, Stardust Team (NASA/JPL)

Size and Velocity Realms in Disks

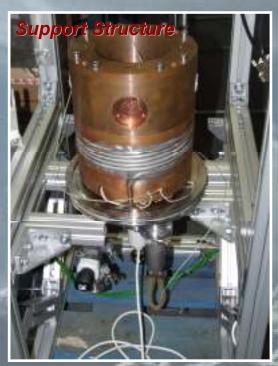
Weidenschilling & Cuzzi, 1993

Circums tellar Material 02 03 01

Dust Cake

Instrument Design

Firing Pistons


Particle Storage Device

Thermal Reservoir

Vacuum Chamber

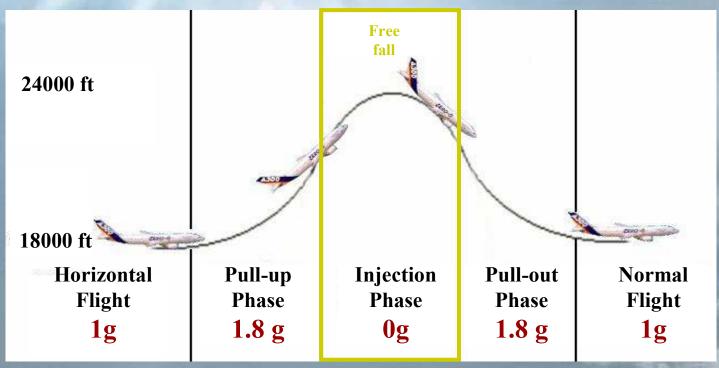
Experiment in Rack

Instrument Design

Collision Space

Visual Alignment

Collision Alignment



Long
Duration
Microgravity!!!

Data Acquisition

Parabolic Flight Maneuver

One Parabola

1 Flight = 31 Parabolas

Each parabola provides up to 22 seconds of reduced gravity or weightlessness

Sample Data from the Experiment

Particle and Large Target Collisions

Sample Data from the Experiment

Particle - Particle Collisions

Results

Collision Statistics

- Semi-elastic Collisions: majority, roughly 80-90% of all collisions
- Fragmentation: 10% of all particle-particle collisions
- Sticking: Only when mass ratio was high
- Only 15% of the translational energy is conserved during most events

Conclusions

- Relative sizes important for constructive verses destructive growth.
- ✓ Small aggregates with $v_{rel} \lesssim 16-22$ cm/s can stick to larger aggregates.
- Similarly sized aggregates with $v_{rel} \gtrsim 36\text{-}40$ cm/s could mark the onset of fragmentation.
- ✓ The majority of fragmentation and sticking events for particle-target events occurred at small impact angles.

Future of the Instrument

Three separate experiments in the short-term:

- Warm Dust Agglomerates (October 2006)
 - Cold Dust Agglomerates (July 2007?)
 - Ice and Icy Dust Samples (October 2007?)
 - Ongoing ground-based Studies

Salter et al. (2007, in prep) – Instrumentation Heiβelmann et al. (2007, in prep) – Scientific Data Analysis

And Me?

My PhD Research

The Evolution of Dust and Gas in Proto-Planetary Disks
The Observational Approach

THE END

Demerese Salter – Leiden Observatory – VLTI Summer School in Porto – 1 June 2007

Pre-Flight Procedures (ICES Team)

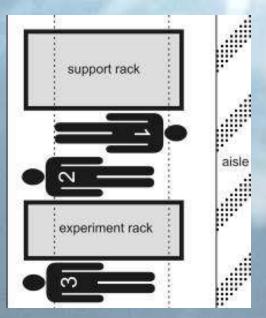
06.15 - Departure from accommodation in Bordeaux

07.00 - Arrival at Bordeaux Airport

08.15 – Flyers confirmed to Novespace personeel

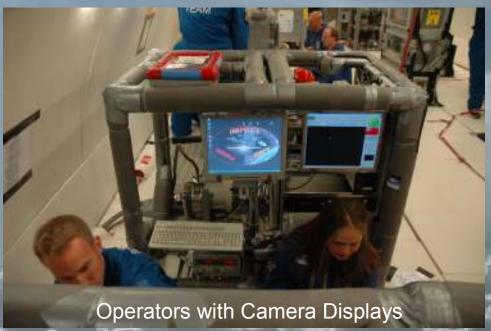
08.30 - Distribution of motion sickness preventative medication

08.55 - Last restroom run


09.00 - Closing of the plane doors

09.30 - Scheduled departure from Bordeaux airport

09.45 - Experimenters to their experiments


10.00 - First Parabola

On Board the Zero-G Plane

