Circumstellar disks as observed at millimeter wavelegths

Leonardo Testi (European Southern Observatory) Silvia Leurini (European Southern Observatory)

- Introduction LT
- Disks and Star Formation @ mm-λ SL
- Disk Evolution & Planet Formation LT
- Present and Future of mm observations SL

Introduction: Observing Circumstellar Disks @ mm-λ

Leonardo Testi (European Southern Observatory)

- Structure of Circumstellar Disks
- Millimeter Continum Emission from Disks
- Molecular Lines Emission from Disks

From Cores to Stars and Planetary Systems

Disks at different wavelengths

SESH DO

Physical sizes

- Few hundred AUs
 - From scattered light
 Mm continuum
 CO mm lines

SED and Infrared Excess

- ◆ Cirsumstellar disks in the PMS phase are optically thick (except at λ≥mm)
- Disks dominate the emission beyond 1-2µm
- The shape of the SED depends on the disk structure

(sub)mm continuum emission

$$\begin{split} F_{\nu} &= \frac{\cos\theta}{D^2} \int_{r_i}^{r_o} B_{\nu}(T_d) (1 - e^{-\tau_{\nu}}) 2\pi r dr \\ T_d &\sim r^{-q} \\ \tau_{\nu} \propto \Sigma(\mathbf{r}) \kappa_{\nu} \qquad \Sigma(\mathbf{r}) \propto \mathbf{r}^{-\mathbf{p}} \qquad \kappa_{\nu} \propto \kappa_{0} \nu^{\beta} \end{split}$$

Masses: (sub)mm continuum emission

$$\begin{array}{l} \bullet \ \mathsf{M}_{\mathsf{D}} \sim 0.01 \text{--} 0.1 \ \mathsf{Msun} \\ \bullet \ \mathsf{M}_{\mathsf{D}} / \mathsf{Mstar} \sim 0.03 \\ \bullet \ \mathsf{F}_{1\mathsf{mm}} \sim \mathsf{B}_{\mathsf{n}}(\mathsf{T}) \ \mathsf{k}_{1\mathsf{mm}} \ \mathsf{M}_{\mathsf{D}} \end{array} \\ F_{\nu} = \frac{\cos\theta}{D^2} \int_{r_i}^{r_\circ} B_{\nu}(T_d)(1 - e^{-\tau_{\nu}}) 2\pi r dr \\ T_d \sim r^{-q} \\ \tau_{\nu} \propto \Sigma(\mathsf{r}) \kappa_{\nu} \quad \Sigma(\mathsf{r}) \propto \mathsf{r}^{\mathsf{p}} \quad \kappa_{\nu} \propto \kappa_{\mathsf{o}} \nu^{\beta} \end{array}$$

Radial density profiles

 High resolution mm continuum observations allow to derive the dust column density as a function of radius

Fflat accretion disk

"Flared" disks

Which observations probe what? **Scattered light** Mid-IR imaging Submm/radio: **Entire Disk** PAHEmission **IR Spectroscopy** HD100546 60 Ia 30 [C. Dominic] isks at mm wavelegths, Porto 4-6 June 2007 20

Molecular gas

◆ Gas has to dominate the disk mass
 ➢ From geometry : H/R ~ 0.1 at 1 AU

$$\frac{1}{\rho} \frac{\partial p}{\partial z} \sim \frac{p}{\rho z} = -\frac{GM_{\star}z}{R^3}$$
$$\rho(z) = \rho(0) \ exp(-z^2/2H^2)$$

 $H/R = \left(T_d/T_g\right)^{1/2} \ \left(R/R_{\star}\right)^{1/2}$

Direct measurements:

$$T_g = \frac{GM_\star\mu}{kR_\star}$$

- ➢Cold gas CO, … (outer disk)
- >Warm gas H_2 , CO, $H_2O(?)$ (inner disk)
- Indirect: Accretion and Jets

Molecular gas

 Calculation of the CO emission assuming thermalised gas

$$I_{\nu} = \int_{0}^{\infty} S_{\nu}(s) e^{-\tau_{\nu}}(s) K_{\nu}(s) ds$$

$$\tau_{\nu}(s) = \int_{0}^{s} K_{\nu}(s') ds' \qquad K_{\nu}^{d}(s) = \rho(s) \cdot k_{\nu} \qquad K_{\nu}^{CO}(s) = n_{l}(s) \cdot \sigma_{\nu}(s)$$

$$n_{l}(s) = \chi_{CO} \frac{\rho(s)}{m_{0}} \cdot \frac{g_{l} e^{-E_{l}/kT_{CO}(s)}}{Z(T_{CO}(s))}$$

$$S_{\nu}(s) = B_{\nu}(T_{CO}(s)) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{\exp(h\nu/kT_{CO}(s)) - 1}$$

$$T_{CO}(r) = T_{CO}(r_{0})(r/r_{0})^{-q} \qquad \text{(Isella et al. 2007)}$$

Leonardo Testi: Disks at mm wavelegths, Porto 4-6 June 2007

()

Molecular gas

Simulated CO profiles and maps

(Isella et al. 2007)

Gas properties and evolution

- Kinematics
 - Disk-outflow interaction
 - Possible evidence for non keplerian motions
- Physical properties
 - Temperature, density structure
 - Abundance, gas to dust ratio
- Chemical properties
 - Formation of complex molecules
 - Chemical differentiation in different regions of the disk

Gas properties and evolution

- Kinematics
 - Disk-outflow interaction
 - Possible evidence for non keplerian motions
- Physical properties
 - Temperature, density structure
 - Abundance, gas to dust ratio
- Chemical properties
 - Formation of complex molecules
 - Chemical differentiation in different regions of the disk

CO isotopes depletion factors: ${}^{13}CO \Rightarrow \sim 10$ ([${}^{13}CO$]/[H₂] $\sim 10^{-7}$) C ${}^{18}O \Rightarrow > 60$

ISM Molecules

 H_2 HD H_3 + H_2D+ *C₃ C₄ *C₂H₄ C_2 CH CH^+ CH_2 C_2H *ĆH₄ CH₃ C_2H_2 $C_3H(lin)$ $c-C_3H$ C_4H *C₅ C_5H H₂CCC(lin) $c-C_3H_2$ $H_2 \overline{C}_6$ *HC₄H $H_2C_4(lin)$ CH_3C_2H C₆H *HC₆H *C₇H CH_3C_4H C₈H $*C_6H_6$ OH CO CO+ H_2O HCO HCO+ CO_2 HOC+ C_2O HOCO+ H_3O+ H₂CO H_2COH+ CH_3OH C_3O CH₂CO HCOOH CH₂CHO CH₂CHOH CH₂CHCHO $HC_{2}CHO C_{5}O$ CH_3CHO $c-C_2H_4O$ CH₃OCHO CH₂OHCHO CH₃COOH CH₃OCH₃ CH₃CH₂OH CH₃CH₂CHO (CH₃)₂CO HOCH₂CH₂OH C₂H₅OCH₃ (CH₂OH)₂CO NH NH_2 HNC CN HCN N_2 H₂CN N_2H^+ NH_2 HCNH⁺ HCCN C_3N CH₂CN CH_2NH HC_2CN HC₂NC NH₂CN C₃NH CH₃CN CH₃NC HC₃NH⁺ *HC₄N C_5N CH₃NH₂ CH_3C_5N ? HC_0N CH₂CHCN HC₅N CH₃CH₂CN HC₇N CH_3C_3N HC₁₁N NO HNO N20 HNCO NH2CHO SH CS SO SO+ NS SiH *SiC SiS SiN SiO HCI *NaCl *AICI *KCI HF *AIF *CP PN C_2S SO_2 OCS H₂S HCS+ c-SiC₂ *SiNC *AINC *SiCN *NaCN *MgCN *MgNC DEMIRM *SiC₄ *SiH₄ H₂CS HNCS C_3S c-SiC₃ CH₃SH C_5S FeO

Complex Organic Molecules Detected Not (yet) detected

Acetic acid

Ethanol

Di-methyl ether

Sugar

Methyl cyanide Methyl formate

How far does chemical complexity go? Can we find pre-biotic molecules in Disks?

Caffeine

Glycine

Purine

Pyrimidine

mm Interferometers (u,v) coverage

mm Interferometers (u,v) coverage

Very Large Array, 27 Antennas, 1.5h of observing time!

<u>N.B.</u> (u,v) coverage is still not uniform.

Critical parameters: •Long baselines •Short baselines •Number of (u,v) points •(u,v) coverage distribution

mm Interferometers (u,v) coverage

- Current mm interferometers offer typically ~10⁴ visibility measurements in several hours, the VLA delivers ~10⁵ visibilities per hour
- ALMA will improve by almost two orders of magnitude

