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Why should we care about dust?

• Dust is most of what we see when we observe 
protoplanetary discs.

• Dust dominates disc opacity, so thermal structure 
of the disc depends on dust heating & cooling.

• Most(ish) heavy elements in discs are in solid 
phase, so “dust” is the primary absorber of high-
energy photons.  Dust therefore has a strong 
influence on gas disc evolution via the MRI.

• Dust represents the “building blocks” for planets.
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What forces affect dust in discs?

• Dust “grains” in discs are subject to two main forces:
- Gravity

- Aerodynamic drag

• Crucially, however, dust is NOT subject to gas pressure.  
This is the origin of most differential gas-dust dynamics.

• Drag force on an individual (spherical) grain is:

• Drag coefficient CD is simple in Epstein regime (depends 
only on thermal velocity of gas); depends on Reynolds 
number in Stokes regime.
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Vertical settling (no turbulence)

• Useful to define “stopping timescale”.  In Epstein regime:

• This is ~1s for micron-sized grains, so such grains are very well 
coupled to the gas.  Often write   Ts = ts Ωk  (dimensionless).

• Equate vertical forces (gravity and drag):

• For micron-sized grains, this results in settling timescales of 
order 105yr.  Expect significant sedimentation of grains > 1μm 
over disc lifetime.  (Turbulent effects: lectures by Hubert Klahr.)
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Radial drift
• Two regimes:

- “Dust”: small particles are well-coupled to the gas, orbit at gas 
velocity.  Migrate relative to gas because they don’t feel pressure 
gradients.

- “Rocks”: larger particles poorly-coupled to gas, orbit at Keplerian 
velocity.  Gas is sub-Keplerian, so rocks feel a “headwind” drag force.

• Gas orbital velocity is sub-Keplerian: 

• If P ~ R-n and disc is locally isothermal, then

• Gas is typically sub-Keplerian by ~100ms-1 at 1AU.  This is 
small fraction (~0.1%), but causes a STRONG HEADWIND!
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Radial drift

• Assume particles spiral in on ~circular orbits: 

• Azimuthal EoM becomes:

• Radial EoM LHS is negligible (to O(h2/r2) ), so:
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Radial drift

• Substituted first term from azimuthal EoM.  Now divide by 
(vK/r), and note that:

• vr,g depends only on viscosity, andηonly on gas pressure.

• Plot in terms of:  Ts scales linearly with particle size, but also 
depends on conditions in gas disc.
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Radial drift

• At the peak, this leads to large 
drift velocities, ~1000cm/s.

• For dM/dt =10-8M yr-1 & 
α=0.01, Ts=1 corresponds to a 
size of ~85cm.  As disc evolves 
the peak shifts to smaller 
grains (lower gas density). 

• Decay timescales at peak are 
very short, ~150yr at 1AU.
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Radial drift

• At the peak, this leads to large 
drift velocities, ~1000cm/s.

• For dM/dt =10-8M yr-1 & 
α=0.01, Ts=1 corresponds to a 
size of ~85cm.  As disc evolves 
the peak shifts to smaller 
grains (lower gas density). 

• Decay timescales at peak are 
very short, ~150yr at 1AU.
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Whipple (1972); Weidenschiling (1977); Takeuchi & Lin (2002)
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Planetesimal formation must occur very rapidly to 
overcome this barrier.

This is often referred to as the “metre-size problem”.



Radial drift in “turbulent” discs 

• In quiescent, viscous discs 
pressure gradient is 
outwards, so all gas is sub-
Keplerian and particles drift 
inwards.

• In general, however, particle 
drift opposes pressures 
gradient: particles move 
towards pressure maxima. 

• If disc is not quiescent, this 
can cause significant 
enhancements of the local 
dust/gas ratio for particles 
with Ts~1.
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Armitage (2007)

If local pressure maximum has length-scale 
Δr, then pressure gradient (~P/Δr) exceeds 
global pressure gradient (~P/r).  
“Concentration timescale” is therefore 
shorter than the drift timescale by ~(r/Δr)2. 



Gas Gas

Radial drift in “turbulent” discs 
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Haghighipour & Boss (2003); Rice et al. (2004, 2006); Durisen et al. (2005)

Figures from Rice, Lodato et al. (2004)

Concentration of particles in this manner can dramatically increase 
collision rates, and may provide a solution to the metre-size problem.



Gas Gas

Radial drift in “turbulent” discs 
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Haghighipour & Boss (2003); Rice et al. (2004, 2006); Durisen et al. (2005)

1000cm50cm

Figures from Rice, Lodato et al. (2004)

Concentration of particles in this manner can dramatically increase 
collision rates, and may provide a solution to the metre-size problem.



Clumping in planet-induced structure

• Presence of a planet alters 
structure of gas disc: spiral 
arms for low-mass planet; 
tidal gap for massive planet.

• Dust is concentrated in these 
local pressure maxima.

• Low-mass planet makes dust 
spiral arms.

• In gap-opening case, tend to 
starve inner region of dust 
and reduce local dust-to-gas 
ratio (Rice et al. 2006).
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e.g. Pardekooper & Mellema (2004,2006); Rice et al. (2006)

Pardekooper & Mellema (2006)



“Sweeping-up” of small grains

• Clearing phase of gas disc: viscosity + photoevaporative wind.

• “Two-fluid” model of dust, similar to Takeuchi et al. (2005).

• Once gap opens, pressure gradients concentrate dust at disc edge.

α=0.01

RDA & Armitage (2007); see also Garaud (2007)
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Grain growth & planetesimal formation

• In standard theory, dust grains agglomerate to form 
planetesimals via “sticking” collisions.

• This model is viable, but many parameters are very 
uncertain.  Sticking and fragmentation probabilities are 
especially problematic.  (Growth to cm sizes seems OK, but 
larger grains stick much less efficiently. )

• Many theories invoke some variant of the Goldreich-Ward 
(1973) mechanism: grav. instability in a thin dust layer.

• Problems exist here also, primarily in how to concentrate 
the dust sufficiently.  Various suggestions exist in the 
literature: settling, radial drift (Youdin & Shu 2005), 
photoevaporation (Throop & Bally 2005), etc.

e.g. Lissauer (1993); Youdin & Shu (2005); Dullemond & Dominik (2005); Dominik et al. (PPV)
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Dominik et al. (2007); experiments by Langkowski & Blum



Dust dynamics: summary

• Gas-grain interactions dominated by aerodynamic drag, arising 
because grains don’t feel gas pressure.

• Grains with Ts~1 are most susceptible to radial drift, and decay 
on very short timescales (<1000yr).

• Growth to ~mm-cm size (agglomeration) can occur in <1Myr.

• Planetisemal formation must occur sufficiently rapidly to 
overcome the “metre-size barrier”.

• Effects of turbulence may be significant (see lectures by Klahr).

• Planetesimal formation still very poorly understood.  Models 
exist, but all have their associated problems.
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Calvet et al. (2005)Calvet et al. (2005)

“Transition discs”
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Calvet et al. (2005)

Forrest et al. (2004)Forrest et al. (2004)

“Transition discs”
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Calvet et al. (2005)

Forrest et al. (2004)

d’Alessio et al. (2005)

CoKu Tau/4

“Transition discs”
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Why do we care?

• CTTs evolve into WTTs, and the transition is fast.

• Objects “caught in the act” of clearing provide a 
key test for models.
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Optically thick disc

Classical T Tauri (CTT)

IR Class II

Dispersed disc/planets?

Weak-lined T Tauri (WTT)

IR Class III



Need spatially resolved data...

• As we will see, SEDs are 
essentially degenerate between 
different models.

• Spatially resolved observations 
are key to breaking these 
degeneracies.

• 1AU at 140pc ⇔ 7mas.

• Existing (sub-)mm observations 
have already resolved some 
spatial structure.

• Ideal (faint) targets for optical/
IR interferometry!
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Qi et al. (2004): CO J=3-2 line (SMA)

Hughes et al. (2007): 7mm 
continuum (VLA)



What is a “transitional” disc?
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“Objects are classed as transition objects if they show 
weak or no infrared excess shortward of 10µm and a 

significant excess at longer wavelengths.”

• “Properties between those typical of CTTs & WTTs” - 
little consistency in how this is defined observationally.

• Najita et al. (2007) adopt the following definition:

• Based on Spitzer IRS spectra, they classify 12 objects in 
Taurus as “transitional”.

• Demographically, these 12 objects show systematically 
lower accretion rates than CTTs of the same disc mass.  
Only 2/12 however, are spectroscopic WTTs.



What is a “transitional” disc?
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What is a “transitional” disc?

• I prefer a more model-based definition:

• Such a definition removes potential selection biases due 
to observed wavelength ranges, and requires a real 
physical change in the radial structure of the disc.

• This is more stringent that the Najita et al. (2007) 
criterion: only 6 of their 12 objects meet satisfy it.

• Unbiased samples will require observations at longer 
wavelengths: Spitzer is not sensitive to large “holes” (>20
-50AU, depending on spectral type).
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“Transition objects have discs which are optically thin at 
shorter wavelengths and optically thick at longer wavelengths.”



What is a “transitional” disc?
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Data from d’Alessio et al. (1999) & Furlan et al. (2006)

Median SED of Taurus CTTs - photometric / Spitzer IRS

Optically thick disc

Optically thin disc ( =0.05)



What is a “transitional” disc?

• Physically, transitional SEDs are consistent with a hole or 
gap in the (dust) disc.

• Dust settling/growth can also give rise to a weakened IR 
excess: optical depth criterion should reject such objects.

• Several models for transition objects exist:
- Clearing by planets

- Photoevaporation/viscous clearing

- Others: photophoresis, dust settling, MRI enhancement, etc.

• All such models predict very similar SEDs in the IR, so 
how do we distinguish between different modes?
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Disc clearing by planets

• A sufficiently massive planet 
will open a gap in a disc, 
resulting in a “transitional” 
appearance.

• Gap-opening criterion is 
independent of surface density.

• Once gap opens planet 
undergoes Type II migration.  
Accretion across gap is a 
strong function of planet mass.

• For α=0.01, planets more 
massive than ~0.5MJup will 
open a gap.
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e.g. Papaloizou & Lin (1984); Takeuchi et al. (1996); Nelson et al. (2000)

Gap-opening criterion is essentially 
that the tidal torques from the planet 
must exceed the viscous torques in 
the disc.  Can be written as: 

q ! 40
R
! 40α

(H
R

)2

Figure from Armitage (2007)



Disc clearing by planets

• Dynamical effect of a planet in a disc is to clear a 
gap or hole on a short (dynamical) timescale (e.g. 
Rice et al. 2003; Quillen 2004; Varnière et al. 2006).

Armitage (2005)
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Disc clearing by planets

• Dynamical effect of a planet in a disc is to clear a 
gap or hole on a short (dynamical) timescale (e.g. 
Rice et al. 2003; Quillen 2004; Varnière et al. 2006).

• Models of these holes are consistent with observed  
infrared SEDs (e.g. Rice et al. 2003, 2006).

• Models usually assume presence of planet, and do 
not consider formation issues.

• Not clear whether accretion will persist across the 
gap over long timescales (see Lubow & d’Angelo 
2006).
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Properties of inner hole models

• Planet-induced gaps/holes:
- Disc masses typical of CTTs.

- Accretion across gap likely (“leaky barrier”), although strong function of 
planet mass (e.g. Lubow & d’Angelo 2006).

- Reduced dust/gas ratio inside gap (in <mm grains, Rice et al. 2006).

- Hole sizes typically few planet radii, so <30-50AU.

• “Photoevaporated” holes:
- Hole sizes ~uniformly distributed (≥1.5AU).

- Little or no accretion (≤10-10M yr-1).

- Low disc mass (~ few MJup).

- Should represent ~1-10% of total (CTT+WTT) population.
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Discriminating between models

• Explore range of allowed parameters: accretion rates and disc masses.

• Combine with toy planet+disc model to compare to data.  (Planet model 
adapted from Lubow et al. 1999 and Lubow & d’Angelo 2006).

RDA & Armitage (2007); see also Najita et al. (2007)
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embedded planets
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Discriminating between models

• Explore range of allowed parameters: accretion rates and disc masses.

• Combine with toy planet+disc model to compare to data.  (Planet model 
adapted from Lubow et al. 1999 and Lubow & d’Angelo 2006).

RDA & Armitage (2007); see also Najita et al. (2007)
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Transition discs: summary

• Current data suggest that accreting:non-accreting 
ratio in transition objects is between 1:1 & 3:1 
(Sicilia-Aguilar et al. 2006; Najita et al. 2007).

• No single object definitively matches any model(!): 
statistical approach seems best.

• Currently number statistics are poor (~15 objects 
known), and selection biases unclear.

• Multi-wavelength data essential: need more disc 
masses and accretion rates (especially meaningful 
upper limits for WTTs).

• Spatial scale (~10AU) makes these ideal(ish) targets 
for the VLTI!
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Recommended reading...

• Observations: Beckwith et al. (1990); Kenyon & Hartmann 
(1995); Haisch et al. (2001); Andrews & Williams (2005).

• Theory: Pringle (1981); Hollenbach et al. (1994); Hartmann et 
al. (1998); Clarke et al. (2001); Weidenschilling (1977).

• Evolution of the protoplanetary cloud and formation of the earth 
and the planets, Safronov (1969).

• Recent reviews:

• PPIV: Hollenbach et al., Calvet et al., Clarke et al.

• PPV: Dullemond et al., Meyer et al.; Najita et al., Natta et al., 
Dominik et al.

• Other: lecture notes by Phil Armitage (astro-ph/0701485)
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