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Outline

• Introduction
- Observational motivation; constraints on timescales

- Mechanisms driving disc evolution (qualitative)

• Gas dynamics
- Basic photoevaporation theory

- Evolutionary models; comparison to observations

• Dust dynamics (and growth)
- Forces affecting dust: diffusion, gas-drag, settling

- Introduction to grain growth and planetesimal formation

• “Transition” discs
- Observational review

- Comparison to models
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Background:
The Star Formation Paradigm

Figures from Blitz (2004), after Shu et al. (1987)
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Hartmann (1998)

Cold gas (>10AU):  CO rotational transitions, H2 rotational transitions(?) 
(e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Cold dust (>10AU): (sub-)mm continuum (Beckwith et al. 1990; Andrews 
& Williams 2005).

What can we observe?
Gas accretion (<0.1AU):  UV 
continuum, broad emission lines (e.g. 
Calvet & Gullbring 1998; Muzerolle et 
al. 2000)

Warm gas (~0.1AU): CO fundamental, 
H2 electronic transitions (e.g. Najita et 
al. 2003; Herczeg et al. 2004)

Warm dust (<1AU): IR emission (e.g. 
Kenyon & Hartmann 1995; many 
others)
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Cold gas (>10AU):  CO rotational transitions, H2 rotational transitions(?) 
(e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Cold dust (>10AU): (sub-)mm continuum (Beckwith et al. 1990; Andrews 
& Williams 2005).

Gullbring et al. (2000)

What can we observe?
Gas accretion (<0.1AU):  UV 
continuum, broad emission lines (e.g. 
Calvet & Gullbring 1998; Muzerolle et 
al. 2000)

Warm gas (~0.1AU): CO fundamental, 
H2 electronic transitions (e.g. Najita et 
al. 2003; Herczeg et al. 2004)

Warm dust (<1AU): IR emission (e.g. 
Kenyon & Hartmann 1995; many 
others)
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Cold gas (>10AU):  CO rotational transitions, H2 rotational transitions(?) 
(e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Cold dust (>10AU): (sub-)mm continuum (Beckwith et al. 1990; Andrews 
& Williams 2005).

Najita et al. (2003)

What can we observe?
Gas accretion (<0.1AU):  UV 
continuum, broad emission lines (e.g. 
Calvet & Gullbring 1998; Muzerolle et 
al. 2000)

Warm gas (~0.1AU): CO fundamental, 
H2 electronic transitions (e.g. Najita et 
al. 2003; Herczeg et al. 2004)

Warm dust (<1AU): IR emission (e.g. 
Kenyon & Hartmann 1995; many 
others)
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Hartmann et al. (2005)

Cold gas (>10AU):  CO rotational transitions, H2 rotational transitions(?) 
(e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Cold dust (>10AU): (sub-)mm continuum (Beckwith et al. 1990; Andrews 
& Williams 2005).

What can we observe?
Gas accretion (<0.1AU):  UV 
continuum, broad emission lines (e.g. 
Calvet & Gullbring 1998; Muzerolle et 
al. 2000)

Warm gas (~0.1AU): CO fundamental, 
H2 electronic transitions (e.g. Najita et 
al. 2003; Herczeg et al. 2004)

Warm dust (<1AU): IR emission (e.g. 
Kenyon & Hartmann 1995; many 
others)
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Simon et al. (2000)

Cold gas (>10AU):  CO rotational transitions, H2 rotational transitions(?) 
(e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Cold dust (>10AU): (sub-)mm continuum (Beckwith et al. 1990; Andrews 
& Williams 2005).

What can we observe?
Gas accretion (<0.1AU):  UV 
continuum, broad emission lines (e.g. 
Calvet & Gullbring 1998; Muzerolle et 
al. 2000)

Warm gas (~0.1AU): CO fundamental, 
H2 electronic transitions (e.g. Najita et 
al. 2003; Herczeg et al. 2004)

Warm dust (<1AU): IR emission (e.g. 
Kenyon & Hartmann 1995; many 
others)
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Andrews & Williams (2007)

Cold gas (>10AU):  CO rotational transitions, H2 rotational transitions(?) 
(e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Cold dust (>10AU): (sub-)mm continuum (Beckwith et al. 1990; Andrews 
& Williams 2005).

What can we observe?
Gas accretion (<0.1AU):  UV 
continuum, broad emission lines (e.g. 
Calvet & Gullbring 1998; Muzerolle et 
al. 2000)

Warm gas (~0.1AU): CO fundamental, 
H2 electronic transitions (e.g. Najita et 
al. 2003; Herczeg et al. 2004)

Warm dust (<1AU): IR emission (e.g. 
Kenyon & Hartmann 1995; many 
others)
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Andrews & Williams (2007)

Cold gas (>10AU):  CO rotational transitions, H2 rotational transitions(?) 
(e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Cold dust (>10AU): (sub-)mm continuum (Beckwith et al. 1990; Andrews 
& Williams 2005).

What can we observe?
Gas accretion (<0.1AU):  UV 
continuum, broad emission lines (e.g. 
Calvet & Gullbring 1998; Muzerolle et 
al. 2000)

Warm gas (~0.1AU): CO fundamental, 
H2 electronic transitions (e.g. Najita et 
al. 2003; Herczeg et al. 2004)

Warm dust (<1AU): IR emission (e.g. 
Kenyon & Hartmann 1995; many 
others)
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Gas dominates disc mass

Dust dominates disc opacity



Observations of disc evolution

• Typical (viscous) evolutionary timescale is ~few Myr.

• Large scatter in lifetimes: some discs are gone at 1Myr, some 
discs persist to 10Myr and beyond.

Muzerolle et al. (2000)Sicilia-Aguilar et al. (2006)
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Skrutskie et al. (1990)Skrutskie et al. (1990)

Observations of disc dispersal

Data from Hartmann et al. (2005)Data from Hartmann et al. (2005)

Data from Hartmann et al. (2005), Andrews & Williams (2005)
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Observational Constraints
• Disc lifetimes are ~Myr, with large scatter.

• CTTs and WTTs co-exist at same age in same clusters.

• Disc masses range from >0.1M  to ≤0.001M .

• Accretion rates span >10-7M yr-1 to ≤10-10M yr-1.

• Termination of accretion roughly contemporaneous with 
disc clearing.

• Discs are cleared rapidly (in ~105yr), across entire radial 
extent of disc.

• Although most stars form in clusters, disc evolution does 
not appear to depend strongly on environment (at least in 
clusters such as the ONC, e.g. Eisner & Carpenter 2006).
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What processes affect (gas) disc evolution?

• “Viscous” evolution, due to radial transport of angular 
momentum.  (See lectures by Lodato, Ferreira.)

• Disc winds/jets, which can remove angular momentum 
from disc (e.g. Shu et al. PPIV, Königl & Pudritz PPIV).

• Dynamical interactions with other stars: tidal stripping of 
disc (e.g. Clarke & Pringle 1993; Scally & Clarke 2002).

• Evaporation by energetic photons, from both star and 
cluster (e.g. Hollenbach et al. 1994, rest of this lecture!).

• Hollenbach et al. (PPIV), consider all and conclude that:
- Viscous evolution dominates for radii ≤ 10AU.

- Photoevaporation dominates for radii ≥ 10AU.

14



Disc Photoevaporation

• First suggested as long ago as Bally & Scoville (1982)!

• Basic premise: UV/X-ray irradiation heats disc surface to 
>> midplane temperature.

• Originally applied to massive stars: first detailed models 
by Hollenbach, Johnstone, Shu et al. in early 1990s.
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Hollenbach et al. (1994, 2000)



HII (ionized)

Rs

Recap: the Strömgren sphere

HI (neutral)

• Within Rs, ionizations (from 
star) balance recombinations:

• Note, however, that this is 
only the initial radius: the HII 
region expands with time.
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Constant density n0

⇒ Φ =

∫ Rs

0
4πr2αBn20dr =

4
3πR

3
sαBn20

⇒ Rs =


3Φ

4παBn20




1/3

Φ = Nrec =
∫
αBn20dV



Σ̇wind ! ρcs

Mass-loss rate
per unit area

Density at base of 
ionized layer: compute 

from ionization 
balance

10km/s

Basic photoevaporation theory
Hollenbach et al. (1994)

• Basic length scale - “gravitational radius”:

• Inside Rg, there is a bound disc atmosphere.

• Outside Rg, the ionized gas is unbound and flows as a wind.

• Wind rate depends on density at base of ionized layer:
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vK = cs ⇒ Rg =
GM∗
c2s
= 8.9

(
M∗
M#

)
AU for cs = 10km/s



Mass-loss outside Rg only

Disc structure inside Rg 
controls penetration of stellar 

radiation to larger radii

Basic photoevaporation theory
Hollenbach et al. (1994)

• Basic length scale - “gravitational radius”:

• Inside Rg, there is a bound disc atmosphere.

• Outside Rg, the ionized gas is unbound and flows as a wind.

• Wind rate depends on density at base of ionized layer:
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vK = cs ⇒ Rg =
GM∗
c2s
= 8.9

(
M∗
M#

)
AU for cs = 10km/s



Basic (EUV) photoevaporation theory
Hollenbach et al. (1994)

• Ionization balance fixes density at base of atmosphere:

• Base density (in “bound” region) given by:

• Beyond Rg we have flow, and recombinations at Rg dominate 
at all radii.  Geometric dilution of flux alters base density:
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n0(R) = ng
(
R
Rg

)
−5/2

, R > Rg

n0(R) = ng
(
R
Rg

)
−3/2

where ng = C
 3Φ
4παBR3g


1/2

, R < Rg

αBR3gn2g
(Rg
R

)2
= αBR3n20(R) , R > Rg

αBR3n20(R) ∝ Φ , R < Rg



Basic (EUV) photoevaporation theory
Hollenbach et al. (1994)

• Density profile gives wind rate:

• Integrate and re-scale to TT parameters:

• This analysis considers static problem only.  More recent 
studies have included effects of dust (on radiative transfer), 
and hydrodynamic effects.  These give quantitative 
differences, but qualitative picture remains the same.
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Σ̇wind(R) = 2n0(R)csµmH

Ṁwind ! 4.4 × 10−10
(
Φ

1041s−1

)1/2 ( M∗
1M%

)1/2
M%yr−1



More recent advances...

• Hydro effects: smaller “critical radius”, sub-sonic launch 
velocity (e.g. Liffman 2003; Font et al. 2004).

• FUV (non-ionizing) heating typically heats to ~1000K, launch 
radius ~100AU (often > disc radius).  PDR-type heating, 
much more complex radiative transfer problem (e.g. 
Johnstone et al. 1998; Adams et al. 2004).

• In case of external irradiation FUV (usually) dominates 
wind.  Much success in explaining proplyd phenomenon, and 
also disc sizes in Orion nebula (e.g. Johnstone et al. 1998, 
Scally & Clarke 2002; Clarke 2007).
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More recent advances...

• Hydro effects: smaller “critical radius”, sub-sonic launch 
velocity (e.g. Liffman 2003; Font et al. 2004).

• FUV (non-ionizing) heating typically heats to ~1000K, launch 
radius ~100AU (often > disc radius).  PDR-type heating, 
much more complex radiative transfer problem (e.g. 
Johnstone et al. 1998; Adams et al. 2004).

• In case of external irradiation FUV (usually) dominates 
wind.  Much success in explaining proplyd phenomenon, and 
also disc sizes in Orion nebula (e.g. Johnstone et al. 1998, 
Scally & Clarke 2002; Clarke 2007).
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Adams et al. (2004)



External irradiation: the ONC “proplyds”
Johnstone et al. (1998)
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External irradiation: the ONC “proplyds”
Johnstone et al. (1998)
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External irradiation + viscosity

• Wind rate from external (FUV) 
heating is sharp function of radius.

• Discs evolve towards “quasi-steady”, 
where viscous spreading at disc edge 
matches mass-loss from wind.

• Late time evolution not sensitive to 
initial disc sizes: dominant factor in 
evolution is initial disc mass.

• Provides good match to disc size 
distribution in ONC, and offers 
possible solution to “proplyd lifetime 
problem” (Clarke 2007).
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Adams et al. (2004); Clarke (2007); Hollenbach & Gorti (in prep.)

Clarke (2007)

Rd(t)

Ṁwind(Rd)



Photoevaporation + viscous evolution

• Clarke et al. (2001) proposed the “UV-switch” model, 
where the wind interacts with a viscously evolving disc:

• As we saw, wind rate only depends on stellar ionizing 
luminosity, and is ~ constant (see later discussion).

• However, disc accretion rate falls with time.  Initially 
accretion rate >> wind rate, but at late times these 
become comparable.

• Wind becomes important at late times.
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∂Σ

∂t
=
3
R
∂

∂R

[
R1/2 ∂
∂R
(
νΣR1/2

)]
− Σ̇wind(R, t)

Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)



Photoevaporation + viscous evolution
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Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

Similarity solution
(viscous evolution)

Wind rate

Viscous evolution + wind



Photoevaporation + viscous evolution

• Clarke et al. (2001) proposed the “UV-switch” model.

• Accretion rate falls as disc evolves.  Once the disc 
accretion rate falls to ~ wind rate the inner disc cannot 
be resupplied, and drains on a viscous timescale.

28

Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)



• In static wind model disc 
is assumed to be 
optically thick to ionizing 
photons, so the diffuse 
(recombination) field 
dominates the wind.

• After the inner disc has 
drained, radiative 
transfer problem 
changes: direct radiation 
field dominates the 
wind.

The outer disc: direct irradiation

Hollenbach et al. (1994)

RDA, Clarke & Pringle et al. (2006a)
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• Analytic model 
computes density from 
ionization balance edge 
and evaluates mass-
loss rate per unit area 
as  :

Direct photoevaporation

Expect wind rate to increase significantly as disc evolves

Shape function depends on disc structure (especially H(R) )

ρcs

RDA, Clarke & Pringle (2006a)
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Ṁdirect = 2.35 × 10−9M#yr−1 .C
(
Φ

1041s−1

)1/2 ( Rin
3AU

)1/2 ∫ Rout/Rin

1
x f (x)dx

∆V ! 2πR.(R∆θ).H1
2∆θ.Φ = αBn

2
in.∆V



• Hydrodynamic models with modified version of ZEUS-2D.

• Use “on-the-spot” approximation to solve for ionization balance.

• Modify equation of state according to location of ionization front.

• Fit functional form for           and use in 1-D evolution model.

Direct photoevaporation

Ṁw(R)

RDA, Clarke & Pringle (2006a)
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• “Three-stage” model for 
disc evolution:

-                      , wind negligible, 
viscous evolution (few Myr).

-                    , gap opens, 
viscous draining of inner disc 
(~105yr).

- Inner hole, wind clears outer 
disc (few 105yr).

• Use simple prescription to 
model SED of evolving disc.

Gas disc evolution model

Snapshots at t=0, 2, 4, 5.9, 6.0, 6.01, 
6.02, 6.03, 6.04....6.18Myr

Entire disc is dispersed in ~3×105yr 
after lifetime of 6Myr

RDA, Clarke & Pringle (2006b)

Ṁwind ! Ṁacc

Ṁwind ∼ Ṁacc
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Evolutionary timescales

• Assume linear viscosity law, neglect factors of order unity:

• Successfully reproduces “two-timescale” behaviour:

• For typical parameters this gives ~5%, which is consistent 
with the observed fraction of “transition objects”.
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Hartmann et al. (1998); Clarke et al. (2001); RDA, Clarke & Pringle (2006b)

tdisc = tν
(
Ṁacc(0)
Ṁwind

)2/3

tinner = tν
Rg
R0

touter(R) =
Md(< R)
Ṁwind(R)

= tν(R)
Ṁacc

Ṁwind(R)
= tν(R)

(
R
Rg

)
−1/2

tclearing
tdisc

=

tν(Rd)
tν(R0)

(
Rd
Rg

)
−1/2 ( Ṁacc(0)

Ṁwind

)
−2/3

=

Rd
R0

(
Rd
Rg

)
−1/2 ( Ṁacc(0)

Ṁwind
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−2/3



Evolutionary tracks: near-infrared

Data from Hartmann et al. (2005)

RDA, Clarke & Pringle (2006b)
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Evolutionary tracks: infrared/sub-mm

Data from Hartmann et al. (2005), Andrews & Williams (2005)

RDA, Clarke & Pringle (2006b)
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Evolutionary tracks: mid-infrared

Data from Padgett et al. (2006)

RDA, Clarke & Pringle (2006b)
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Uncertainty: heating rates

• Biggest uncertainty in photoevaporation models is the stellar 
UV emission, and especially the ionizing luminosity (<912Å).

• Stellar ionizing flux probably from magnetic/chromospheric 
activity.  Typical values ~1042s-1, approx. constant over 10Myr 
(RDA, Clarke & Pringle 2005).  

• However, sample is small: ~10 objects with STIS, ~50 with 
IUE.  More data needed: COS on HST (Sep 2008?) is most 
promising upcoming instrument.

• “Indirect” measurements such as line emission from winds 
may be more promising than observations in the UV (e.g. 
[NeII] line at 12.8μm; Pascucci et al. 2007).
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Schematic picture of (gas) disc evolution
Figures courtesy of David Hollenbach
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Schematic picture of (gas) disc evolution
Figures courtesy of David Hollenbach
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Schematic picture of (gas) disc evolution
Figures courtesy of David Hollenbach
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Schematic picture of (gas) disc evolution
Figures courtesy of David Hollenbach
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• Evolution of gas discs dominated by viscous 
evolution and photoevaporation.

• Observations demand rapid disc clearing after a 
long lifetime (the “two-timescale” constraint).

• Photoevaporation by external O stars can explain 
the proplyds, but only affects a minority of TTs.

• Models which combine photoevaporation by the 
central star with viscous evolution are able to 
reproduce many observed properties.

• Biggest uncertainty in these models remains the  
heating rates - UV fluxes poorly constrained.
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Gas dynamics: summary
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