Evolution & dispersal of gas & dust discs

Richard Alexander JILA, University of Colorado

"Circumstellar discs at high angular resolution" Porto, June Ist 2007

Outline

- Introduction
 - Observational motivation; constraints on timescales
 - Mechanisms driving disc evolution (qualitative)
- Gas dynamics
 - Basic photoevaporation theory
 - Evolutionary models; comparison to observations
- Dust dynamics (and growth)
 - Forces affecting dust: diffusion, gas-drag, settling
 - Introduction to grain growth and planetesimal formation
- "Transition" discs
 - Observational review
 - Comparison to models

Background: The Star Formation Paradigm

Figures from Blitz (2004), after Shu et al. (1987)

Gas accretion (<0.1AU): UV

continuum, broad emission lines (e.g. Calvet & Gullbring 1998; Muzerolle et al. 2000)

Warm gas (~0.1AU): CO fundamental, H₂ electronic transitions (e.g. Najita et al. 2003; Herczeg et al. 2004)

Warm dust (<IAU): IR emission (e.g. Kenyon & Hartmann 1995; many others)

Cold gas (>10AU): CO rotational transitions, H₂ rotational transitions(?) (e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Gas accretion (<0.1AU): UV

continuum, broad emission lines (e.g. Calvet & Gullbring 1998; Muzerolle et al. 2000)

Warm gas (~0.1AU): CO fundamental, H₂ electronic transitions (e.g. Najita et al. 2003; Herczeg et al. 2004)

Warm dust (<IAU): IR emission (e.g. Kenyon & Hartmann 1995; many others)

Cold gas (>10AU): CO rotational transitions, H₂ rotational transitions(?) (e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Gas accretion (<0.1AU): UV

continuum, broad emission lines (e.g. Calvet & Gullbring 1998; Muzerolle et al. 2000)

Warm gas (~0.1AU): CO fundamental, H₂ electronic transitions (e.g. Najita et al. 2003; Herczeg et al. 2004)

Warm dust (<IAU): IR emission (e.g. Kenyon & Hartmann 1995; many others)

Cold gas (> OAU): CO rotational transitions, H₂ rotational transitions(?) (e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Gas accretion (<0.1AU): UV

continuum, broad emission lines (e.g. Calvet & Gullbring 1998; Muzerolle et al. 2000)

Warm gas (~0.1AU): CO fundamental, H₂ electronic transitions (e.g. Najita et al. 2003; Herczeg et al. 2004)

Warm dust (<IAU): IR emission (e.g. Kenyon & Hartmann 1995; many others)

Cold gas (>10AU): CO rotational transitions, H₂ rotational transitions(?) (e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Gas accretion (<0.1AU): UV

continuum, broad emission lines (e.g. Calvet & Gullbring 1998; Muzerolle et al. 2000)

Warm gas (~0. IAU): CO fundamental, H₂ electronic transitions (e.g. Najita et al. 2003; Herczeg et al. 2004)

Warm dust (<IAU): IR emission (e.g. Kenyon & Hartmann 1995; many others)

Cold gas (>10AU): CO rotational transitions, H₂ rotational transitions(?) (e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Gas accretion (<0.1AU): UV

continuum, broad emission lines (e.g. Calvet & Gullbring 1998; Muzerolle et al. 2000)

Warm gas (~0.1AU): CO fundamental, H₂ electronic transitions (e.g. Najita et al. 2003; Herczeg et al. 2004)

Warm dust (<IAU): IR emission (e.g. Kenyon & Hartmann 1995; many others)

Cold gas (>10AU): CO rotational transitions, H₂ rotational transitions(?) (e.g. Körner & Sargent 1995; Dutrey et al. 1996)

Gas accretion (<0.1AU): UV

continuum, broad emission lines (e.g. Calvet & Gullbring 1998; Muzerolle et al. 2000)

Warm gas (~0.1AU): CO fundamental, H₂ electronic transitions (e.g. Najita et al. 2003; Herczeg et al. 2004)

Warm dust (<IAU): IR emission (e.g. Kenyon & Hartmann 1995; many others)

Gas dominates disc mass Dust dominates disc opacity

Observations of disc evolution

- Typical (viscous) evolutionary timescale is ~few Myr.
- Large scatter in lifetimes: some discs are gone at IMyr, some discs persist to I0Myr and beyond.

Observations of disc dispersal

Data from Hartmann et al. (2005), Andrews & Williams (2005)

Observational Constraints

- Disc lifetimes are ~Myr, with large scatter.
- CTTs and WTTs co-exist at same age in same clusters.
- Disc masses range from >0.1 M $_{\odot}$ to $\leq 0.001 M_{\odot}$.
- Accretion rates span >10⁻⁷M_{\odot}yr⁻¹ to \leq 10⁻¹⁰M_{\odot}yr⁻¹.
- Termination of accretion roughly contemporaneous with disc clearing.
- Discs are cleared rapidly (in ~10⁵yr), across entire radial extent of disc.
- Although most stars form in clusters, disc evolution does not appear to depend strongly on environment (at least in clusters such as the ONC, e.g. Eisner & Carpenter 2006).

What processes affect (gas) disc evolution?

- "Viscous" evolution, due to radial transport of angular momentum. (See lectures by Lodato, Ferreira.)
- Disc winds/jets, which can remove angular momentum from disc (e.g. Shu et al. PPIV, Königl & Pudritz PPIV).
- Dynamical interactions with other stars: tidal stripping of disc (e.g. Clarke & Pringle 1993; Scally & Clarke 2002).
- Evaporation by energetic photons, from both star and cluster (e.g. Hollenbach et al. 1994, rest of this lecture!).
- Hollenbach et al. (PPIV), consider all and conclude that:
 - Viscous evolution dominates for radii \leq 10AU.
 - Photoevaporation dominates for radii \geq 10AU.

Disc Photoevaporation

- First suggested as long ago as Bally & Scoville (1982)!
- Basic premise: UV/X-ray irradiation heats disc surface to >> midplane temperature.
- Originally applied to massive stars: first detailed models by Hollenbach, Johnstone, Shu et al. in early 1990s.

Recap: the Strömgren sphere

• Within R_s, ionizations (from star) balance recombinations:

$$\Phi = N_{\rm rec} = \int \alpha_{\rm B} n_0^2 dV$$

$$\Rightarrow \Phi = \int_0^{R_s} 4\pi r^2 \alpha_B n_0^2 dr = \frac{4}{3}\pi R_s^3 \alpha_B n_0^2$$

$$\Rightarrow R_{\rm s} = \left(\frac{3\Phi}{4\pi\alpha_{\rm B}n_0^2}\right)^{1/2}$$

 Note, however, that this is only the initial radius: the HII region expands with time.

Basic photoevaporation theory Hollenbach et al. (1994)

• Basic length scale - "gravitational radius":

$$v_{\rm K} = c_{\rm s} \qquad \Rightarrow \qquad R_{\rm g} = \frac{GM_*}{c_{\rm s}^2} = 8.9 \left(\frac{M_*}{M_\odot}\right) {\rm AU} \quad \text{for} \quad c_{\rm s} = 10 {\rm km/s}$$

- Inside R_g, there is a bound disc atmosphere.
- Outside R_g, the ionized gas is unbound and flows as a wind.
- Wind rate depends on density at base of ionized layer:

Basic photoevaporation theory Hollenbach et al. (1994)

• Basic length scale - "gravitational radius":

$$v_{\rm K} = c_{\rm s} \qquad \Rightarrow \qquad R_{\rm g} = \frac{GM_*}{c_{\rm s}^2} = 8.9 \left(\frac{M_*}{M_\odot}\right) {\rm AU} \quad \text{for} \quad c_{\rm s} = 10 {\rm km/s}$$

- Inside R_g, there is a bound disc atmosphere.
- Outside R_g, the ionized gas is unbound and flows as a wind.
- Wind rate depends on density at base of ionized layer:

Basic (EUV) photoevaporation theory Hollenbach et al. (1994)

• Ionization balance fixes density at base of atmosphere:

 $\alpha_{\rm B} R^3 n_0^2(R) \propto \Phi$, $R < R_{\rm g}$

• Base density (in "bound" region) given by:

$$n_0(R) = n_g \left(\frac{R}{R_g}\right)^{-3/2} \quad \text{where} \quad n_g = C \left(\frac{3\Phi}{4\pi\alpha_B R_g^3}\right)^{1/2} \quad , \quad R < R_g$$

• Beyond R_g we have flow, and recombinations at R_g dominate at all radii. Geometric dilution of flux alters base density:

$$\alpha_{\rm B} R_{\rm g}^3 n_{\rm g}^2 \left(\frac{R_{\rm g}}{R}\right)^2 = \alpha_{\rm B} R^3 n_0^2(R) \quad , \quad R > R_{\rm g}$$
$$n_0(R) = n_{\rm g} \left(\frac{R}{R_{\rm g}}\right)^{-5/2} \quad , \quad R > R_{\rm g}$$

Basic (EUV) photoevaporation theory Hollenbach et al. (1994)

• Density profile gives wind rate:

 $\dot{\Sigma}_{\text{wind}}(R) = 2n_0(R)c_{\text{s}}\mu m_{\text{H}}$

• Integrate and re-scale to TT parameters:

$$\dot{M}_{\text{wind}} \simeq 4.4 \times 10^{-10} \left(\frac{\Phi}{10^{41} \text{s}^{-1}}\right)^{1/2} \left(\frac{M_*}{1 \text{M}_{\odot}}\right)^{1/2} \text{M}_{\odot} \text{yr}^{-1}$$

 This analysis considers static problem only. More recent studies have included effects of dust (on radiative transfer), and hydrodynamic effects. These give quantitative differences, but qualitative picture remains the same.

More recent advances...

• Hydro effects: smaller "critical radius", sub-sonic launch velocity (e.g. Liffman 2003; Font et al. 2004).

$$R_{\rm crit} = 1.5 \left(\frac{M_*}{M_\odot}\right) \text{AU} \simeq 0.2R_{\rm g} , \ \dot{M}_{\rm wind} = 1.6 \times 10^{-10} \text{M}_\odot \text{yr}^{-1} \left(\frac{\Phi}{10^{41} \text{s}^{-1}}\right)^{1/2} \left(\frac{M_*}{1 \text{M}_\odot}\right)^{1/2}$$

- FUV (non-ionizing) heating typically heats to ~1000K, launch radius ~100AU (often > disc radius). PDR-type heating, much more complex radiative transfer problem (e.g. Johnstone et al. 1998; Adams et al. 2004).
- In case of external irradiation FUV (usually) dominates wind. Much success in explaining proplyd phenomenon, and also disc sizes in Orion nebula (e.g. Johnstone et al. 1998, Scally & Clarke 2002; Clarke 2007).

More recent advances...

External irradiation: the ONC "proplyds"

Johnstone et al. (1998)

External irradiation: the ONC "proplyds"

Johnstone et al. (1998)

External irradiation + viscosity

Adams et al. (2004); Clarke (2007); Hollenbach & Gorti (in prep.)

- Wind rate from external (FUV) heating is sharp function of radius.
- Discs evolve towards "quasi-steady", where viscous spreading at disc edge matches mass-loss from wind.
- Late time evolution not sensitive to initial disc sizes: dominant factor in evolution is initial disc mass.
- Provides good match to disc size distribution in ONC, and offers possible solution to "proplyd lifetime problem" (Clarke 2007).

Photoevaporation + viscous evolution Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

• Clarke et al. (2001) proposed the "UV-switch" model, where the wind interacts with a viscously evolving disc:

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{R} \frac{\partial}{\partial R} \left[R^{1/2} \frac{\partial}{\partial R} \left(\nu \Sigma R^{1/2} \right) \right] - \dot{\Sigma}_{\text{wind}}(R, t)$$

- As we saw, wind rate only depends on stellar ionizing luminosity, and is ~ constant (see later discussion).
- However, disc accretion rate falls with time. Initially accretion rate >> wind rate, but at late times these become comparable.
- Wind becomes important at late times.

Photoevaporation + viscous evolution Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

Photoevaporation + viscous evolution Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

- Clarke et al. (2001) proposed the "UV-switch" model.
- Accretion rate falls as disc evolves. Once the disc accretion rate falls to ~ wind rate the inner disc cannot be resupplied, and drains on a viscous timescale.

The outer disc: direct irradiation

- In static wind model disc is assumed to be optically thick to ionizing photons, so the diffuse (recombination) field dominates the wind.
- After the inner disc has drained, radiative transfer problem changes: direct radiation field dominates the wind.

Direct photoevaporation

RDA, Clarke & Pringle (2006a)

• Analytic model computes density from ionization balance edge and evaluates massloss rate per unit area as $\rho c_{\rm S}$: $\frac{1}{2}\Delta\theta.\Phi = \alpha_{\rm B}n_{\rm in}^2.\Delta V$

 $\Delta V \simeq 2\pi R.(R\Delta\theta).H$

Expect wind rate to increase significantly as disc evolves

$$\dot{M}_{\text{direct}} = 2.35 \times 10^{-9} \text{M}_{\odot} \text{yr}^{-1} \cdot C \left(\frac{\Phi}{10^{41} \text{s}^{-1}}\right)^{1/2} \left(\frac{R_{\text{in}}}{3 \text{AU}}\right)^{1/2} \int_{1}^{R_{\text{out}}/R_{\text{in}}} xf(x)dx$$

Shape function depends on disc structure (especially H(R))

Direct photoevaporation

RDA, Clarke & Pringle (2006a)

- Hydrodynamic models with modified version of ZEUS-2D.
- Use "on-the-spot" approximation to solve for ionization balance.
- Modify equation of state according to location of ionization front.
- Fit functional form for $\dot{M}_{w}(R)$ and use in I-D evolution model.

Gas disc evolution model

RDA, Clarke & Pringle (2006b)

Evolution of surface density: $M_*=1M_{\odot}$, $\Phi=10^{42}s^{-1}$

Snapshots at t=0, 2, 4, 5.9, 6.0, 6.01, 6.02, 6.03, 6.04....6.18Myr

Entire disc is dispersed in ~3×10⁵yr after lifetime of 6Myr

• "Three-stage" model for disc evolution:

- $\dot{M}_{\text{wind}} \ll \dot{M}_{\text{acc}}$, wind negligible, viscous evolution (few Myr).
- $\dot{M}_{wind} \sim \dot{M}_{acc}$, gap opens, viscous draining of inner disc (~10⁵yr).
- Inner hole, wind clears outer disc (few 10⁵yr).
- Use simple prescription to model SED of evolving disc.

Evolutionary timescales

Hartmann et al. (1998); Clarke et al. (2001); RDA, Clarke & Pringle (2006b)

• Assume linear viscosity law, neglect factors of order unity:

$$t_{\text{disc}} = t_{\nu} \left(\frac{\dot{M}_{\text{acc}}(0)}{\dot{M}_{\text{wind}}}\right)^{2/3}$$
$$t_{\text{inner}} = t_{\nu} \frac{R_{\text{g}}}{R_{0}}$$
$$t_{\text{outer}}(R) = \frac{M_{\text{d}}(< R)}{\dot{M}_{\text{wind}}(R)} = t_{\nu}(R) \frac{\dot{M}_{\text{acc}}}{\dot{M}_{\text{wind}}(R)} = t_{\nu}(R) \left(\frac{R}{R_{\text{g}}}\right)^{-1/2}$$

• Successfully reproduces "two-timescale" behaviour:

$$\frac{t_{\text{clearing}}}{t_{\text{disc}}} = \frac{t_{\nu}(R_{\text{d}})}{t_{\nu}(R_{0})} \left(\frac{R_{\text{d}}}{R_{\text{g}}}\right)^{-1/2} \left(\frac{\dot{M}_{\text{acc}}(0)}{\dot{M}_{\text{wind}}}\right)^{-2/3} = \frac{R_{\text{d}}}{R_{0}} \left(\frac{R_{\text{d}}}{R_{\text{g}}}\right)^{-1/2} \left(\frac{\dot{M}_{\text{acc}}(0)}{\dot{M}_{\text{wind}}}\right)^{-2/3}$$

 For typical parameters this gives ~5%, which is consistent with the observed fraction of "transition objects".

Evolutionary tracks: near-infrared

RDA, Clarke & Pringle (2006b)

Data from Hartmann et al. (2005)

Evolutionary tracks: infrared/sub-mm

RDA, Clarke & Pringle (2006b)

Data from Hartmann et al. (2005), Andrews & Williams (2005)

Evolutionary tracks: mid-infrared

RDA, Clarke & Pringle (2006b)

Data from Padgett et al. (2006)

Uncertainty: heating rates

- Biggest uncertainty in photoevaporation models is the stellar UV emission, and especially the ionizing luminosity (<912Å).
- Stellar ionizing flux probably from magnetic/chromospheric activity. Typical values ~10⁴²s⁻¹, approx. constant over 10Myr (RDA, Clarke & Pringle 2005).
- However, sample is small: ~10 objects with STIS, ~50 with IUE. More data needed: COS on HST (Sep 2008?) is most promising upcoming instrument.
- "Indirect" measurements such as line emission from winds may be more promising than observations in the UV (e.g. [Nell] line at 12.8µm; Pascucci et al. 2007).

Gas dynamics: summary

- Evolution of gas discs dominated by viscous evolution and photoevaporation.
- Observations demand rapid disc clearing after a long lifetime (the "two-timescale" constraint).
- Photoevaporation by external O stars can explain the proplyds, but only affects a minority of TTs.
- Models which combine photoevaporation by the central star with viscous evolution are able to reproduce many observed properties.
- Biggest uncertainty in these models remains the heating rates UV fluxes poorly constrained.