Molecular Line Radia nsfer in Protoplanei

Ya. Pavlyuchenkov¹, D. Semenov¹, Th. Henning¹, Guilloteau², V. Pietu³, R. Launhardt¹, A. Dutrey² ¹MPIA Heidelberg – ²Obs. F eaux - 3IRAN Grenoble

Goal of this project is to analyze the line radiative transfer (LRT) in protoplanetary disks and to compare everal approximate LRT methods with Monte Carlo calculation

Disk Model

Exact Method

A flaring steady-state model of a Class II disk with vertical temperature gradient from D'Alessio et al. 1999 (see Fig.1)

Star Radius: 2.64R Star Mass: 0.7M Star Temperature: 400

Disk radius: 800 AU, Disk mass: 0.07M_{sun}. Accretion rate: 10 8 M. yr Turbulent velocity: 0.1 km/s Keplerian rotation

Uniform and layered molecular abundances

Fig. 1: Density and temperature distributions in the adopted disk model

2D non-LTE code "ART" (part of (JRANIIA) package)

mmetry and spherical ate system

As clerated Λ-iterations Long characteristics with Monte Carlo ray sampling

New acceleration concepts of interacting cells (see Fig.2)

Fig. 2: Black area represents the disk cells that are radiatively coupled to the white dot in the equatorial plane of the Keplerian disk

pproximate N

- 1) LTE: Local Thermodynamical Equlibrium
- 2) FEP: Full Escape Probability (optically thin approximation)
- 3) LVG: Large Velocity Gradient (the photons are assumed to escape in equatorial plane only)
- 4) VEP: Vertical Escape Probability (the photons are assumed to escape in vertical direction only)
- 5) VOR: Vertical One Ray (non-local 1D method for vertical direction)

Fig. 3: Three distinct cases of the line excitation in protoplanetary disk with layered chemical structure Depending on location of molecules, the rotational transitions can be thermally, sub-thermally, or super-thermally excited.

Results

HCO* synthetic spectra obtained by different LRT methods for the disk model with uniform abundances. The convolved with 10" beam, the distance is 140 pc. The disk inclination is 0° (left panels) and 60° (right panels)

- 1) LTE approach is appropriate for low molecular transitions only:
- 2) FEP can be used for the upper transitions (beware of the maser effect for low transitions!):
- 3) LTE and FEP work well for chemically stratified disks (molecules are in the warm intermediate layer):
- 4) LTE and FEP are not always accurate for chemically uniform disks;
- 5) LVG and VEP are in general more reliable methods than FEP and LTE;
- VOR method is comparable to LVG but slower;
- 7) Various regimes of the line excitation and radiative coupling in protoplanetary disks are analyzed;
- 8) Ray-tracing part of the Monte-Carlo LRT method can be accelerated for rotating disks by factors of 10-50 when only radiatively coupled disk zones are taken into account.

Fig. 5: HCO*(4-3) intensity map for the 0.68 km/s velocity offset and for the disk inclination of 60°. The uniform (top row) and layered (bottom row) abundances of HCOare utilized. The results are obtained by LTE (left), ART (middle), and FEP (right panel)