Classic disc physics I - Basics

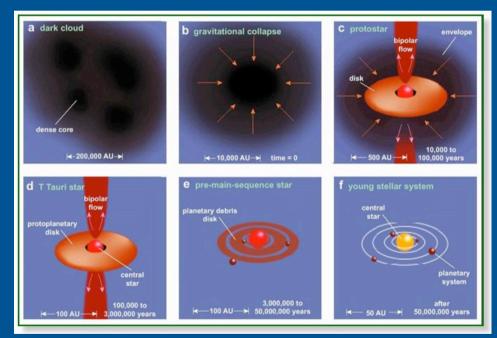
Giuseppe Lodato *University of Leicester*

Lectures outline

- Lecture I Basic equations
- Lecture II Steady state solutions Time dependent models Outbursts
- Lecture III Sources of angular momentum transport

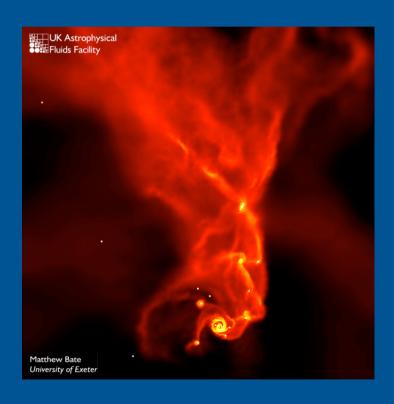
- Protostars are generally surrounded by flattened structures discs
- General picture of isolated star formation
 - (Things can be significantly more complex in reality! see Bate, Bonnell & Bromm simulations)

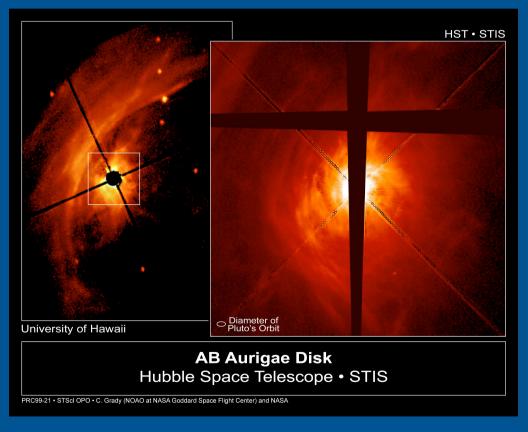
• General picture of isolated star formation



from Blitz

 (Things can be significantly more complex in reality! see Bate, Bonnell & Bromm simulations)





- Discs found at all scales:
 - Around high-mass O-B stars
 - Around intermediate mass star (HAEBE)
 - Around solar mass stars (T Tauri, FU Orionis)
 - Around brown dwarfs
- Protostellar discs are made of:
 - Gas (dominate mass and dynamics)
 - Dust (dominate opacity and thermo-dynamics)

Main properties: mass

- Obtained from sub-mm observations (where discs are optically thin)
 - Very uncertain due to
 - Uncertainties in dust opacity -- grain growth
 - Dust to mass ratio
 - Typically: $M_{disc} \sim 0.005$ -0.1 M_* (at least in the T Tauri regime)
 - For high-mass stars, M_{disc} can be a significant fraction of M_*
 - For brown dwarfs?

Main properties: sizes

• Theory: absolute upper limit: need to reach centrifugal equilibrium $t_{\rm dyn} \sim 2\pi \sqrt{\frac{R^3}{GM}} \sim 10^6 {\rm yrs}$

$$R \sim 10^4 {\rm AU} (M/M_{\odot})^{1/3}$$

- For BD \sim a few 10^3 AU
- − For massive stars ~ a few 10⁴ AU
- Observed:
 - High mass stars: pseudo-discs at 10⁵ AU
 - High mass stars: discs at 10⁴ AU
 - T Tauri stars: a few 100 AU (big resolved ones)
 - BD: not well determined, maybe comparable to T Tauri

Main properties

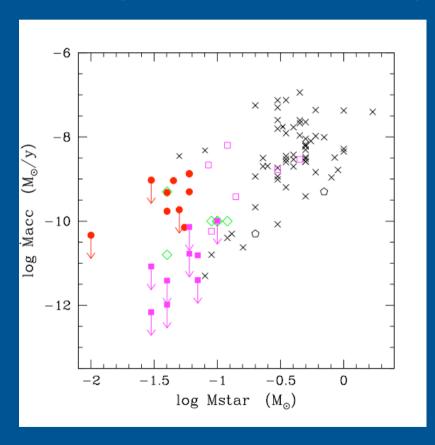
- Mass accretion rate: obtained from a number of methods:
 - strength of emission lines emitted as gas reaches the star
 - veiling of photospheric lines due to accretion shocks
 - Typical numbers:
 - 10⁻⁵ M_{sun}/yr for the few high-mass star discs
 - 10^{-7} -- 10^{-9} M_{sun}/yrs for T Tauri stars
 - 10⁻¹¹ M_{sun}/yrs for brown dwarfs
 - During outbursts: 10⁻⁴ M_{sun}/yrs (FU Orionis)
 - Mdot scales as M^2 ?

(Natta et al. 2004, Clarke & Pringle 2006, Alexander & Armitage 2006)

Main properties

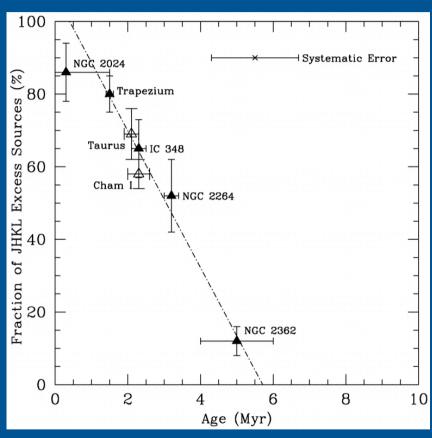
 $\overline{-Mdot}$ scales as M^2 ?

(Natta et al. 2004, Clarke & Pringle 2006, Alexander & Armitage 2006)



Main properties

- Lifetime: 10^6 - 10^7 years
- Temperature:
 - ranges from ~ 10 K in the outer parts, up to ~ 10³ K in the hotter inner parts
 - also dependent on state: much higher (up to ~ 10⁴ K) during outbursts (e. g. FU Orionis)
 - Temperature determines thickness of the disc (see later)
 - Tipically H/R ~ 0.1



Haisch et al. 2001

Why discs?

- Relatively easy for interstellar gas to get rid of energy (e.g., by radiation)
- Much more difficult to remove angular momentum
- For a given ang. mom., minimum energy orbit is a circular one
- Reach "circularization radius", where centrifugal balance holds and orbits become circular
- For a Keplerian potential (assume that accreting gas is much smaller than protostar):

$$R_{
m circ} = rac{L^2}{GM}$$

Viscous discs

- In a disc, the potential for angular momentum removal is larger
 - Discs are subject to a large number of instabilities that might redistribute angular momentum (Lecture 3)
 - Anisotropies, turbulence generated by instabilities lead to internal stress
 - Initial studies of discs not able to quantify such internal stress and rely on simplified viscosity prescription (α-prescription: Shakura & Sunyaev, 1973)

A brief history

• The pioneers:

- Shakura & Sunyaev (1973): viscosity prescription and first steady-state models
- Lynden-Bell & Pringle (1974): rigorous fluid-dynamical derivation and <u>time-dependent</u> models

• The '80s:

- Wave propagation in discs:
 - Warps and bending waves (Papaloizou & Pringle 1983)
 - Density waves (Goldreich & Tremaine 1978)
- Disc-satellite interaction:
 - Lin & Papaloizou (1979)
 - Goldreich & Tremaine (1980)
- <u>Limit-cycle instability</u>:
 - Clarke, Lin & Papaloizou (1989), Bell & Lin (1994)
- The era of numerical simulations (from the '90s to present)
 - Non-linear disc dynamics, disc instabilities, source of transport
 - The magneto-rotational instability (MRI) (Balbus & Hawley 1992)
 - Gravitational instability (GI) (Laughlin & Bodenheimer 1994)

Thin discs

- Main disc property: being thin!
- At any radius R, thickness H<<R -- fundamental scaling of all quantities!
- Deal with "surface" quantities: surface density profile Σ ...
- ... or with vertically averaged quantities (for example viscosity ν)
- Use cylindrical coordinates

Basic equations

• Continuity equation:

$$\frac{\partial \Sigma}{\partial t} + \frac{1}{R} \frac{\partial}{\partial R} (R\Sigma u) = 0$$

- Momentum equation:
 - There are actually three components
 - 1) Radial: centrifugal balance
 - 2) Vertical: hydrostatic balance
 - 3) Azimuthal: angular momentum conservation

Basic equations

• Continuity equation:

$$\frac{\partial \Sigma}{\partial t} + \frac{1}{R} \frac{\partial}{\partial R} (R \Sigma u) = 0$$

- Momentum equation:
 - There are actually three components
 - 1) Radial: centrifugal balance

$$v_\phi^2 = \Omega^2 R^2 = \frac{GM}{R}$$

Note

- In order to obtain Keplerian rotation we have neglected several terms in Navier-Stokes eq:
 - pressure terms $\sim c_s^2/R$
 - $\overline{\hspace{0.1cm} -\hspace{0.1cm} \text{Lagrangian derivative}} \sim u^2/R^3$
 - Is this allowed?
- Note than specific angular momentum in Keplerian discs increases as:

$$j = \Omega R^2 = \sqrt{GMR}$$

Basic equations

• Continuity equation:

$$\frac{\partial \Sigma}{\partial t} + \frac{1}{R} \frac{\partial}{\partial R} (R \Sigma u) = 0$$

- Momentum equation:
 - There are actually three components
 - 1) Radial: centrifugal balance
 - 2) Vertical: hydrostatic balance

Vertical hydrostatic balance - Keplerian discs

$$rac{\partial P}{\partial z} = -rac{GMz}{R^3}
ho$$

$$rac{\partial
ho}{\partial z} = -rac{GMz}{c_{
m s}^2 R^3}
ho$$

$$\rho = \rho_0 \exp(-z^2/2H^2)$$

$$rac{H}{R} = rac{c_{
m s}}{V_{\phi}}$$

- Gaussian profile with thickness H
- Thin disc condition equivalent to supersonic rotation: $c_s << V_{rot}$

Basic equations

• Continuity equation:

$$\frac{\partial \Sigma}{\partial t} + \frac{1}{R} \frac{\partial}{\partial R} (R \Sigma u) = 0$$

- Momentum equation:
 - There are actually three components
 - 1) Radial: centrifugal balance
 - 2) Vertical: hydrostatic balance
 - 3) Azimuthal: angular momentum conservation

Angular momentum conservation

Navier-Stokes equation

$$\frac{\partial}{\partial t}(\Sigma \Omega R^2) + \frac{1}{R} \frac{\partial}{\partial R}(\Sigma \Omega R^3 u) = -\frac{1}{R} \frac{\partial}{\partial R}(R^2 T_{R\phi})$$

• Viscous stress tensor $T_{R\phi}$

$$T_{\mathrm{R}\phi} = \Sigma
u R \left| rac{\mathrm{d}\Omega}{\mathrm{d}R} \right|$$

Angular momentum conservation

• Navier-Stokes equation

$$\frac{\partial}{\partial t}(\Sigma\Omega R^2) + \frac{1}{R}\frac{\partial}{\partial R}(\Sigma\Omega R^3 u) = -\frac{1}{R}\frac{\partial}{\partial R}(\Sigma\nu R^3 |\Omega'|)$$

• Viscous stress tensor $T_{R\phi}$

$$T_{\mathrm{R}\phi} = \Sigma
u R \left| rac{\mathrm{d}\Omega}{\mathrm{d}R} \right|$$

Master disc evolution equation

- Obtained combining continuity equation and angular momentum conservation
- For Keplerian discs,
- and after some algebra, get:

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{R} \frac{\partial}{\partial R} \left[R^{1/2} \frac{\partial}{\partial R} (\Sigma \nu R^{1/2}) \right]$$

A little puzzle

- Simple kinetic arguments suggest that in a linear shearing viscous flow, momentum is transported from high to low momentum
- Analogously, one would expect ang. mom. in a disc to flow from high to low
- Ang. mom. flux at R:

$$\propto j(R - \mathrm{d}R) - j(R + \mathrm{d}R) \propto -\frac{\mathrm{d}j}{\mathrm{d}R}$$

- However, viscosity prop. to $-d\Omega/dR$
- How come?

