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Abstract. By construction, optical (and near-infrared) interferometers typi-
cally have resolutions designed to resolve stellar and circumstellar features;
such resolution is manifested as fringe contrast (or visibility) reduction for
the resolved source. These same interferometers also experience visibility re-
ductions due to instrumental and environmental limitations, so careful data
calibration is required to accurately differentiate astrophysical and instrumen-
tal effects. This contribution discusses the basic techniques for and sources of
errors in visibility data calibration, and selection strategies for sources used
to calibrate the iterferometer response.

1 Introduction – Calibrating Interferometer Visibility Data

An astronomical interferometer is a device that measures the interference (or attributes
associated with the interference) of radiation from astronomical sources. Many astro-
nomical applications use the interferometer to measure the amount of interference (or
coherence) in the incident radiation field to obtain information about the source mor-
phology on angular scales (or spatial frequencies) sampled by the interferometer. It is
conventional to quantify this degree of coherence in the interferometric visibility; this
visibility and how it related to astronomical source properties is discussed extensively in
these proceedings by Hannif and others.

As an interferometer resolves an astronomical source (thereby obtaining useful infor-
mation on its structure) the visibility (or fringe contrast) is reduced. The same inter-
ferometer also experiences visibility reductions due to instrumental and environmental
limitations. To properly interpret visibility measurements we must assess the degree to
which they are effected by limitations of the interferometer and its environment – in
other words we need some methodology to differentiate astrophysical and instrumental
effects in our data. In this way our interferometers are no different from any other mea-
suring apparatus which imperfectly measures the intrinsic properties of our source. We
typically describe the process of assessing and correcting for measurement imperfections
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as calibration in general, and speak of calibrating data to represent the intrinsic source
properties.

For the purposes of this discussion I will define this calibration as “the transformation
of observables into a space where they have direct bearing on the (scientific) question at
hand, and a critical evaluation of the precision (repeatability) and accuracy (correctness)
of that transformation.” If the interferometer measures the coherence of our source
radiation field, then our goal in calibration is to assess and correct for the incoherence of
the interferometer and its environment.

Similar to other observational techniques, this degree of incoherence is typically es-
timated by quasi-contemporaneous measurement of calibration sources – astronomical
sources that are used to derive a model of the interferometer response. The phenomenon
that effect interferometer performance are many and varied, but in general are variable
as a function of time, sky location, and brightness. Therefore, calibration sources are
typically geometrically similar to the target (i.e. nearby in the sky) for both observational
efficiency and instrumental and atmospheric variation reasons, and similar in apparent
brightness to create a similar response by the interferometer.

In this discussion we will consider the process by which we calibrate visibility ampli-
tude data on a science source. By common convention we will use visibility amplitude or
just visibility to mean power-normalized visibility modulus, which is purely real, defined
in the interval [0,1], and 1 for an unresolved source measured by an ideal (i.e. perfectly
coherent) interferometer. Operationally we typically measure visibility amplitudes (Vm)
on one science target and one (or more) calibration source(s). We then transform these
measured visibilities into “calibrated” visibility amplitudes (Vc) that represent an esti-
mate of the intrinsic visibility (Vi, i.e. the response of the ideal interferometer) on our
science target. Typically we assume a parametric form for the calibration transforma-
tion, and then estimate the transformation’s parameter values from measured visibilities
and intrinsic properties of the calibration source(s).

2 Calibration Models and System Visibility

While the calibration transformations we consider can in theory have an arbitrary func-
tional form, by far the most pervasive (and simple) form used for interferometer data
calibration is a linear form:

Vc ∝ Vm = CVm

with the “constant” of proportionality C capturing the visibility reductions due to the
incoherence of the interferometer. In this model C is independent of (in particular) Vm,
so all measured visibilities are scaled by common factor, at least in a narrow, temporally
and spatially local sense. Of course, applying this model to calibration source (calibrator)
observations allows for an estimate of C:

C = Vc−cal/Vm−cal

Since Vc−cal represents the intrinsic visibility for the calibration source (Vi−cal), the
apparent prescription for estimating C is to be able to a priori estimate Vi−cal. In the



Calibrating Visibility Data 3

special case where a calibrator source is unresolved at a given spatial frequency, the
expected visibility (modulus) is 1, and C is:

C = Vi−cal/Vm−cal → 1/Vm−cal ≡ 1/Vsys

where we have introduced the system visibility or point-source response Vsys of the in-
terferometer, the expected visibility for an ideal point source as measured by a real
(imperfect) interferometer. The system visibility is sometimes know by other names:
point-source response, visibility transfer function, or interferometric efficiency factor. So
the standard form of our linear calibration model for the science target is:

Vc−trg = (1/Vsys)Vm−trg (2.1)

with
Vsys = Vm−cal/Vi−cal (2.2)

Equation 2.2 gives a the form of the system visibility for a general (i.e. possibly resolved)
calibration source.

Following our calibration definition from §1, we must assess the uncertainty (variance)
in our calibration calculation, which takes the form:

σ2
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(2.3)

where σV −m−trg and σV −m−cal represent visibility measurement uncertainties for the
target and calibration source respectively, and σV −i−cal represents the uncertainty in
the a priori prediction of the calibrator intrinsic visibility. In the limit that the target
and calibrator visibilities are measured well, the limiting calibration error becomes the
ability to predict the calibrator intrinsic visibility.

More complicated calibration models are possible and are beyond the scope of this
contribution. Interested readers are referred to Mozurkewich et al. 1991 and Boden et al. 1998.

3 Choosing Calibration Sources

To this point the discussion is independent of the calibrator’s fundamental nature. How-
ever Eq. 2.3 frames many of the practical issues of choosing calibrators. The term in
σV −m−cal represents the calibrator visibility measurement uncertainty. This error is
usually strongly correlated with the source brightness. Minimizing the contribution from
this term implies a calibrator should be bright enough that it’s fringes can be well-
measured by the interferometer. A common practice is to choose calibrators of similar
brightness to the science target, then σV −m−trg and σV −m−cal often contribute similarly
in Eq. 2.3. More extensive discussion of fringe measurement is given in citeColavita1999.

However the term in σV −i−cal is different from the measurement error; it goes to
the source astrophysical properties in general, and captures the uncertainty in a priori

predicting the calibrator’s intrinsic visibility in particular. In theory an arbitrary source
can serve as a calibrator, but the desire to accurately predict intrinsic visibilities means in
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practice only simple sources have been used for such purposes. The simplest sources for
our purposes are effectively single stars: stars that either have no luminous companion,
or no luminous companion that can be detected by the interferometer as it measures
fringes of the primary.

Predicting a single calibrator’s intrinsic visibility Vi−cal requires assuming a morpho-
logical model. Again, the common practice is to assume the simplest practical model
– that of a luminous uniform disk against a dark background. The predicted visibility
amplitude from a uniform disk of apparent diameter Θcal is given by:

Vi =
2J1(πΘB⊥/λ)

πΘB⊥/λ
(3.1)

with J1 is the first-order Bessel function, B⊥ is the interferometer baseline length per-
pendicular to the star direction, and λ is the interferometer operating wavelength (see
Boden 1999 or Hannif in these proceedings for a derivation). Fig. 1 depicts this disk
visibility and its first derivative as a function of Θcal. This visibility model exhibits
the expected behavior: Vi−cal ∼ 1 for an unresolved source (i.e. Θcal << λ/B), and
Vi−cal << 1 for a resolved source (i.e. Θcal ∼ λ/B).

To use Eq. 3.1 one must have a working estimate of Θcal. We will consider techniques
for estimating Θcal in § 4, but for the moment it suffices to observe that any working
angular diameter estimate will be of finite precision with uncertainty σΘ−cal. This model
allows an estimate the calibration error contribution in Eq. 2.3 from finite calibrator
diameter error:

σV −i−cal ≈

∣

∣

∣

∣

dV

dΘcal

∣

∣

∣

∣

σΘ−cal (3.2)

The calibration error contribution from σV −i−cal in Eq. 2.3 can be minimized either by
minimizing the fundamental uncertainty in the model diameter (σΘ−cal, i.e. knowing the
calibrator diameter well), or better, by minimizing the sensitivity of the calibration on
the calibrator model diameter error – i.e. minimizing | d Vi−cal/dΘ |. As seen in Fig. 1,
| d Vi−cal/dΘ | → 0 in the unresolved limit (Θ << λ/B⊥), so we are motivated to work
with calibrators that are as unresolved as practical.

From this discussion we conclude that a good calibrator must be bright enough that
its fringe parameters can be well-measured. Further, we want these calibrators to be as
unresolved (i.e. apparently small) as possible so as to minimize the calibration error due
to calibrator modeling error. It will turn out that these two objectives are fundamentally
at odds with each other. These considerations lead us to the practical necessity of
estimating angular diameters in the evaluation of potential calibrators.

4 Indirectly Estimating Stellar Angular Diameters

As argued above, we are motivated to consider stars that are unresolved by the inter-
ferometer (Θ << λ/B⊥). To get a sense of scale involved consider first our own sun
(physical diameter ≈ 0.01 AU) as viewed from a typical solar neighborhood distance of
10 pc – its apparent diameter would be on the order of 1 milliarcsecond (10−3 arcseconds,
mas). This quick assessment was possible because we have have an accurate measure-
ment of the sun’s physical radius, and we assumed a definite distance in this example; in
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Fig. 1. Disk Visibility and Derivative. The predicted visibility V of a uniform disk as a function

of it’s apparent diameter Θ (Eq. 3.1) and the first derivative |dV/dΘ| are given. Θcal is in units

of the projected interferometer fringe spacing λ/B⊥. Inset is a closeup of the unresolved limit

(Θ << λ/B⊥) where V → 1 and |dV/dΘ| → 0. Calibration sources are typically chosen to be

as unresolved as possible so as to minimize systematic calibration error from finite knowledge

of Θcal and large values of |dV/dΘ|.

the general case we lack at least one of these quantities for most other stars in the sky.
So our estimates of apparent diameter will necessarily appeal to more indirect methods.

While many techniques exist for such indirect estimates, the most broadly applicable
and prevalent techniques are based on the definition of a star’s effective temperature

(Binney & Merrifield 1998, Cox et al. 1999):

The effective temperature of a star is the temperature of a black body with
the same emittance (luminosity per surface area, fBol) as the star and is
defined according to the Stefan-Boltzmann law (fBol = σT 4

eff ).

The effective temperature is not a thermodynamic temperature at all, instead it is defined
by (and serves as proxy for) a star’s specific radiant emittance or surface brightness.
With this definition we can consider a star of physical radius R; evidently the star’s total
luminosity is given by its radiant emittance times its surface area:

L = 4πR2σT 4
eff

Viewed at a distance D the incident bolometric flux (total radiant flux per unit collecting
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area) is

FBol = L/4πD2 = (R/D)2σT 4
eff = (Θ/2)2σT 4

eff

having identified the apparent diameter Θ = 2R/D in the last equality. The stars
apparent diameter is then just:

Θ =

√

4Fbol

σT 4
eff

≈ 8.17mas× 10−0.2∗(V +BC) [Teff/5800K]
−2

(4.1)

with the second approximation capturing the star’s bolometric flux in terms of its ap-
parent (Johnson) visual magnitude V and the bolometric correction BC appropriate for
its spectral type.

Eq. 4.1 is deceptively simple: it seems all we need for an operational angular diameter
estimate is to measure a star’s bolometric flux and effective temperature. This is true,
but it leaves open the question of exactly how well one can estimate bolometric flux
and effective temperature. Operationally these quantities are most securely estimated
through spectral energy distribution modeling: constructing a model of the spectral
energy distribution for the source, integrating it to estimate the bolometric flux, and
combining that with (some) estimate of the effective temperature to compute the appar-
ent diameter estimate through Eq. 4.1. An example of this kind of SED analysis is given
in Fig 2, where we have estimated the apparent diameter of the effectively single star
51 Peg (HD 217014; Mayor & Queloz 1995, Marcy et al 1997) by various SED modeling
techniques. Cohen et al 1999 and Merand et al 2005 have published studies of angular
diameters estimated by SED modeling techniques; the interested reader is referred there
for more extensive discussions.

Related techniques are employed in the Infrared Flux Method (IRFM) used by Black-
well and collaborators (e.g. Blackwell & Lynas-Gray 1994 and references therein), and
Mozurkewich et al. 1991, van Belle et al 1999, and Kervella et al 2004 have used color
indices (e.g. V −K) as proxies for effective temperature estimates. In the author’s opin-
ion these methods are less reliable than more comprehensive SED modeling, but offer
accessible alternatives for quick estimation.

It is important to keep in mind that indirect diameter estimation eventually involves
the source effective temperature estimate. Using even a high-fidelity SED template for
photometric (e.g. Fig. 2) or spectroscopic modeling, the resulting diameter estimate is no
more accurate than the effective temperature calibration of the template. For this reason
it is important to have a healthy skepticism for estimated angular diameters, and a keen
eye on how likely diameter errors can couple into systematic errors in the calibrated data
set through Eqs. 2.3 and 3.2.

Finally it is noteworthy that the apparent brightness and apparent size of a star are
inextricably connected; this is exhibited in Eq. 4.1, which shows how the apparent size
of a star decreases as the apparent magnitude (Johnson V ) increases (i.e. the source ap-
pears dimmer – in the limit of constant Teff and BC). In § 3 we argued that calibrators
should be both apparently bright (for favorable SNR in measuring fringe parameters) and
apparently small (for favoriable control of calibration errors through Eq. 3.2). Eq. 4.1
makes it clear that these two objectives are fundamentally at odds with each other. Cal-
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Fig. 2. Modeling of the spectral energy distribution for 51 Pegasi (HD 217014). Top: the SED

template is a single-temperature Plank black body photosphere model. The agreement between

data and model is reasonably good, leading to a reasonable estimate of source apparent diameter

(0.77 ± 0.10 mas). Bottom: the SED of the same source as modeled using a high-fidelity SED

template from Pickles 1998. A similar angular diameter results from this computation (0.70 +/-

0.02 mas).
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ibrator selection calls for striking a balance between brightness and calibration accuracy;
Merand et al 2005 discuss quantitative methods for striking this balance.

5 Stellar Multiplicity

Binary stars are prevalent among stars in the solar neighborhood. In the definitive study
for solar-like stars Duquennoy & Mayor (1991, DM91) determined that roughly 1/2 of
all solar-type primary stars had stellar companions, and similar statistics are thought
to hold for other stellar types. From the standpoint of identifying potential visibility
calibrators the prevailing wisdom is multiplicity is to be avoided. Surely this is an
overstatement; simple visual binaries with separations of a few arcseconds or more pose
no significant risk in application as calibrators (hence our use of the term effectively
single in § 3). However, multiplicity over angular scales that would effect visibility
measurements should be avoided – the modeling of visibilities from binary calibrators
(e.g. σV −i−cal in Eq. 2.3) excessively complicates the calibration process. Figure 3 depicts
the observed DM91 binary period distribution (corrected for detection efficiency), and
the log-normal analytical distribution model provided by DM91. For the purposes of
the present discussion I have added a calculation of the implied angular semi-major axis
assuming a typical system mass of 1.6 M⊙ and system distance of 25 pc. If we were to
exclude systems with projected separations of 5” (the dotted vertical line in Fig. 3) or
less we would exclude approximately 60% of the observed DM91 population.

The operational question is how to identify multiple systems in the experiment plan-
ning phase. Here there are no great pearls of wisdom beyond detective work. Some of
the standard sources for the identification of binarity are: the SIMBAD stellar database
hosted by Centre de Donnes astronomiques de Strasbourg1, various spectroscopic binary
catalogs such as that by Batten2 (1989), the Washington Double Star catalog3, and
the Hipparcos astrometric catalog – in particular the orbital and component solution
annexes4 (ESA 1997).

Even having performed due diligence to screen against known multiplicity, detections
of previously unknown multiplicity sometimes occur at the telescope. This is particularly
true for large-aperture interferometers such as the VLTI (see Scholler in these proceed-
ings) and the Keck Interferometer (KI, Colavita et al 2003), where the high sensitivity
brings fainter and more poorly understood sources accessible. Contingency planning
for calibrators being detected as binary is advisable if one is using previously unvetted
calibrators.

6 Experiment Planning Tools

The preceding discussion has left open the question of how to incorporate these various
considerations in the planning of an actual experiment. Fortunately, there are several

1see http://cdsweb.u-strasbg.fr/
2available at http://vizier.u-strasbg.fr/cgi-bin/VizieR
3available at http://ad.usno.navy.mil/wds/
4available at http://astro.estec.esa.nl/Hipparcos/
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software suites available to assist users in incorporating these considerations in the design
of interferometer experiments. The ASPRO package from JMMC (Jean Marie Mariotti
Center; http://www.mariotti.fr/aspro page.htm), the getCal package from MSC (Michel-
son Science Center; http://msc.caltech.edu/software/getCal), and the SearchCal package
(associated with ASPRO; Bonneau et al 2006), and the VLTI Visibility Calculator and
Calibrator Selection tools from ESO (European Southern Observatory, both available
from http://www.eso.org/observing/etc) all integrate various threads from the prior dis-
cussion to facilitate the user establishing a plan for an optical interferometry experiment.
As observing details will vary with different instruments and observing modes, we rec-
ommend the reader consult documentation and support resources specific to their target
instrument.

7 Observing and Calibrating Visibilities

Once potential calibrators are identified for a particular experiment, it is then necessary
to define the parameters for the observing, typically addressing such issues as the number
of calibrators to be carried in the experiment, the relative ratio of calibration to science
observations, and any specific order for the observations to proceed in. With regard to the



10 Title : will be set by the publisher

number, a conventional rule of thumb is two calibrators carried through the experiment
duration is a safe strategy. This allows extensive cross-checking between calibrators for
consistency, and some redundancy in the event that one of the selected objects exhibit
unexpected and/or unwanted features in the data. With regard to the ratio of science
and calibration data, assuming that the instrument performs similarly on the target
and calibrators, the optimal (i.e. minimum-variance on the calibrated observation SNR)
ratio of target to calibrator data is 1:1. However, external operational objectives such as
overall instrument science throughput may well override the desire to optimize the SNR
on individual observations.

It is our experience at PTI and KI that the overall best calibration performance results
when target and calibration measurements are interleaved in short (e.g. < 15 min) cycle
times – this amounts to the visibility analog of “chopping” between target and calibrator.
These chop cycles allow the calibration model to be responsive to temporal variations
in the instrument or environment (e.g. see Boden et al. 1998). Similarly the choice of
calibrators near the target both serve to make the chop cycles more efficient and mitigate
the effects of any sky position-dependent effects in either the instrument or atmosphere.

Finally it is important to keep in mind the calibration limitations imposed by finite
error in the calibrator diameter (e.g. Eq. 3.2); calibration precision is not the same thing
as accuracy. Recent work by van Belle & van Belle (2005) discuss this point in some
detail.

8 Summary

In this contribution I have introduced the basic concepts for calibrating interferometric
visibility data. The detailed implementation of strategies for evaluating calibrators and
preparing experiment plans are best discussed in the context of specific instruments
and observing modes. Many of the basic considerations that facilitate well-calibrated
interferometry experiments can be implemented in the context of observation planning
software such as the ASPRO and getCal packages, both referenced above.

I have dealt mainly with issues of the astrophysics of potential calibration sources
(e.g. the modeling of calibrator SEDs, the frequency and identification of multiplicity).
However there are potentially other instrument-specific factors that should be considered
in selecting calibration sources. For instance, for big-aperture interferometers such as
VLTI and KI, the Adaptive Optics correction performance will be a function of brightness,
and may be a function of color. So it may become necessary to approximately match
brightnesses and colors between target and calibrators. Another possible consideration
is in the delay coverage of the interferometer for targets at the extremes of declination
coverage where small differences in sky position can result in surprisingly large differences
in temporal accessibility.
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