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Abstract

In our earlier lectures we have been introduced to some of the theoretical bases
of ground-based optical/IR interferometry. In this paper, we take a look at the
subject again, but with a focus on how the conceptual ideas described before can
be implemented in practice. For astronomical users of the VLTI, some familiarity
with these ideas is beneficial from the point of view of planning interferometric
observations and in understanding what limitations a specific implementation may
imply. As in my earlier chapter, this treatment will be brief, but will draw attention
to a number of the key underlying principles.
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1 Introduction

As we have seen in previous chapters, the fundamental principles associated
with interferometric imaging are reasonably straightforward. The radiation
from a source is sampled at different locations, these samples are used to
estimate the spatial coherence function of the radiation, and these data are
inverse Fourier transformed so as to recover the source brightness distribution.
In this chapter, we will look at some of the more practical issues related to
performing these tasks. Since the detailed design of an array such as the VLTI
represents a huge technical task, we will only have time here to touch the
surface of many of the relevant issues. However, as in my earlier chapter, my
goals will be to identify the key physical principles underlying these challenges
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so that the reader will, in her own time, be able to assess the relative merits
of different technical solutions, and appreciate the origins of the limitations
that constrain any given implementation.

As before, space constraints have meant that I have not been able to address
the specific technical challenges associated with the search for extra-solar plan-
ets and with astrometric interferometry. There is a broad consensus that both
of these science goals demand that exquisite care and attention be paid to
the interferometer design: the reader should not assume that the omission of
these topics here implies that these challenges are beyond the capability of the
VLTI, but simply that a helpful treatment would have been beyond the scope
of this lecture. By way of introduction, readers interested in the implementa-
tion of the astrometric and planet-hunting mode of the VLTI are referred to
the recent review of the PRIMA instrument by Delplancke et al. (2006) and
the references therein.

2 A smorgasbord of tasks

From the point of view of someone tasked with designing one, the functional
requirements of the various sub-systems comprising an interferometric array
can be treated as a linear sequence. Broadly speaking, once the radiation from
the source has been sampled, each of the interferometric sub-systems performs
some activity on the light and then “hands it over” to the next sub-system.
This can be most easily appreciated by looking at Fig. 1. This shows a cartoon
of the VLTI optical train with the signals from the target following a path from
source to detector that can be roughly described as follows:

(1) Sampling of the light by two telescopes
(2) Relay of the light beams to a central beam-combining laboratory
(3) Correction for the geometric delay between the beams
(4) Combination of the signals to form a fringe pattern
(5) Detection of the fringe pattern and estimation of the fringe amplitude

and phase

In each case, the sub-system charged with performing the function can operate
quasi-autonomously from all the others, and its design can, to first-order, be
optimised independently too.

In the following sections we will examine a number of these key tasks in
more detail, and comment on three further aspects of interferometric prac-
tice that deserve mention: first, the impact of spatial perturbations on the
wavefronts hitting the telescopes, second, the impact of temporal atmospheric
perturbations, and finally, how we can usefully characterise the sensitivity of
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Fig. 1. A schematic cartoon showing the principal sub-systems associated with the
VLTI. Light from the target is intercepted by the two telescopes, is relayed to the
delay lines, and thereafter is mixed in a focal plane to form the fringes which encode
information on the source structure.

an interferometric array.

3 Where should the radiation field be sampled?

The basic “rules-of-thumb” relevant to choosing how best to sample the radi-
ation at ground level have been described in my earlier chapter. The critical
parameters we discussed there were the projected separation vectors between
the array elements (as seen from the target), since these determine the samples
of the Fourier transform of the source brightness distribution that the inter-
ferometer measures. Of particular importance were (i) the overall number of
data secured — this must be sufficiently large if the structure of the source
under study is complicated, (ii) the uniformity of the distribution of samples in
the Fourier plane, and (iii) the matching of the shortest and longest projected
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baselines to the range of angular scales of interest.

In many practical situations, the ability to optimise the Fourier plane sampling
is often restricted by rather simple considerations. I have listed a few of these
below to provide a flavour of what is meant; the reader will I hope appreciate
that this list is not comprehensive:

• Can the array elements be relocated appropriately without interfering with
each other mechanically, or shadowing the light paths from the target?

• Can the delay lines introduce the appropriate geometric delay for the give
combination of telescope location and instantaneous target position?

• Will the zenith distance of the target be sufficiently small such that the
effects of a large air mass not compromise the fringe contrast?

• Will the source be too resolved on the shorter baselines to permit on-source
fringe-tracking (see later)?

Many contemporary interferometers such as the CHARA, NPOI and COAST
arrays have exploited “Y”-shaped configurations of telescopes. These give good
instantaneous Fourier plane coverage, and permit the use of shallow angle
reflections to redirect the light back to the central beam combining laboratory
— this latter feature can help in maintaining the polarization state of the
radiation as it propagates through the interferometer. However, this type of
telescope layout is certainly not obligatory, and so whatever “works” in terms
of satisfying the rules of thumb, for example the grid-like arrangement of
Auxiliary Telescope pads at the VLTI, will usually suffice.

4 Methods for beam relay

Two mechanisms have been favoured for relaying the light from the interfer-
ometric collectors to the central beam combining laboratory in most contem-
porary arrays. By far the most popular strategy is to send the light along a
shielded duct in the form of a collimated beam. By making the beam diameter,
D, sufficiently large, i.e. by setting D > (λz)1/2, where z is the propagation
distance, and λ the wavelength, diffractive spreading of the beams can be min-
imized, and little light loss is incurred. More sophisticated approaches (see, e.g.
Horton et al., 2001) use slightly narrower beam profiles and allow modal filter-
ing of the light to take place as the beams propagate. In many cases free-space
propagation is also combined with an evacuated lightpath. Vacuum propaga-
tion ensures that both longitudinal dispersion, i.e. the mismatch between the
optical paths for different colours, and the effects of optical turbulence can
be wholly eliminated within the relay train and leads to fully polychromatic
performance.
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An alternative approach, which has been receiving more attention of late, is
the use of optical fibres, i.e. waveguide technology. This has the potential for
more flexible “reconfiguration” of the relay system — one could in principle
imagine a “plug-and-play”interferometer — but the management of multi-
wavelength beam injection and dispersion compensation over long relay paths
remain challenging (see, e.g. Vergnole et al., 2005).

Whichever of these approaches is adopted, polarization control is an important
concern. There are at least two issues to address:

(1) Can the polarization states of the interfering beams be matched so as to
allow for interference to take place?

(2) Can the beam transport sub-system leave the polarization state of the
radiation unchanged as it is delivered to the beam combining laboratory?

In free-space beam relay systems the first of these issues can be mitigated by
ensuring that that the beams of light from all telescopes hit their respective
relay mirrors at the same angles of incidence, i.e. that the relay trains are geo-
metrically matched (see, e.g. Traub, 1988). The second, is generally realised by
using a relay geometry that utilises mirrors at near-normal incidence, thereby
limiting any diattenuation of the beams. For fibre-based beam transport, the
use of polarization-preserving fibres, explicit polarization compensation and
environmental control can all be exploited. Initial results for the OHANA
project appear to suggest that any polarization-induced reduction in appar-
ent fringe contrast can be managed adequately (Kotani et al., 2005) so that
fibre beam transport may become increasingly popular in the future.

5 Equalizing the optical path

In any interference experiment there is always need to match the optical paths
of the interfering beams to better than the coherence length of the light being
mixed, i.e. the optical path difference (OPD) should be ≤ lcoh ∼ λ2/∆λ,
and this is no different at an interferometer such as the VLTI. The major
contributor to this OPD will be the geometric delay associated with relative
orientation of the target and interferometer baseline. This will be equal to
~̂s · ~B, where ~̂s is a unit vector in the pointing direction and ~B is the baseline
vector. So, in principle, delays of as large as the longest baseline may need to
be introduced for targets close to the horizon.

The optical path needed to correct the geometric delay is usually introduced
using a movable carriage carrying retro-reflecting optics, the whole mechanism
being called a delay line. The position of the carriage is typically measured
using off-the-shelf laser metrology hardware. These commercial metrology sys-
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Fig. 2. A schematic cartoon showing of a cat’s-eye based delay line. In this design,
light enters at the top right, is focused by a parabolic primary onto a flat secondary
located at the focus, and reappears to the right as a collimated beam beneath the
input collimated beam. The drive wheels for the carriage can be seen at lower right
and left, as well as the vacuum vessel in which the whole assembly runs. (Figure
courtesy of D. Sun)

tems can routinely monitor positions to a few tens of nano-metres over many
tens or even hundreds of metres, and so the art of delay line design is really
in controlling the dynamical behaviour of the opto-mechanical components
rather than monitoring them. It is interesting to consider how fast the geo-
metric delay can change: a rough estimate is given by | ~B| cos(θ)dθ

dt
, where θ

is the angle between the ~̂s and the zenith. At the VLTI, this can be as fast
as ∼ 0.5 cm s−1, although the delay-line carriages can move much faster than
this when slewing between targets.

Two delay lines are shown in fig. 1, allowing for variable extra optical paths
to be introduced into each telescope beam separately. The optical elements
are normally vibrationally decoupled from the moving carriage using some
type of compliant flexures, and the motion of the whole assembly is typically
controlled using a combination of a coarse motor stage and more precisely
commanded electromagnetic actuators. Fig. 2 shows a schematic view of a
modern delay line that uses a parabolic primary/flat secondary mirror optical
design. The input beam enters from the right and is returned to the right, in
identical form, but displaced beneath its incoming partner.

The precision with which the OPD must be controlled will depend on the
maximum permissible reduction in apparent fringe contrast that is allowed.
At the VLTI the OPD jitter introduced by the delay lines is only a few tens of
nm (i.e. less than one fiftieth of a wave at 1.25 µm) and so since the coherence
length in even the lowest spectral resolution modes of AMBER and MIDI
are several waves, the loss in fringe contrast due to finite bandwidth effects
will be negligible if the delay lines can be commanded to move to the correct
locations.

There is one final aspect of delay compensation that is worth mentioning here.
This is associated with the fact that the geometric delay occurs in vacuum, and
so its correction should ideally take place using evacuated delay lines. While
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this is realised at a number of interferometers, e.g. the NPOI in Flagstaff, this
is not the case at the VLTI. As a result, since the delay is compensated for in a
medium with a wavelength-dependent refractive index, for any given pointing
direction the compensation will only be correct for a single wavelength. At
long wavelengths, the effect of this so called “longitudinal dispersion” (see, e.g.
Lawson & Davis (1996); Tango (1990)) is, generally speaking, small. However,
for long baselines and at large zenith angles with broad bandpasses it must be
corrected for with additional optical elements. To get a feel for the magnitude
of this effect at the VLTI we can consider measurements of a source 50◦ from
the zenith with a 100m baseline. Between the edges of the near-infrared K-
band, from 2.0 – 2.5µm, the dispersion-induced differential delay will be ∼
10µm and hence comparable to the coherence length of the light. From a
practical point of view this implies that keeping the visibility losses due to
this effect below 10% will need a spectral resolution, R ≥ 5, or a value of
R > 12 for measurements made in the J band at 1.25µm.

We can close this section with a reminder of a result we introduced in an
earlier chapter, i.e. that the use of delay lines as described almost always
enforces a narrow field of view. This is simply a consequence of the fact that
the geometric delay is a function of the source location and so a delay line
can only correct for the geometric delay for one part of a source at a time.
This quantitative result says that the field of view can be no larger than
approximately [λ/Bmax]× [λ/∆λ], i.e. the product of the spatial and spectral
resolutions. A work-around to this problem does exist for two independed
targets separated by some angle θ. In this case, if the light from each can be
propagated separately from the telescopes, the use of one primary delay line
together with a smaller differential delay line can be exploited to correct for
the two unequal geometric delays.

6 Beam combination at optical/IR wavelengths

We have already seen that the essential principle underlying beam combination
at optical and near-IR wavelengths is the addition of the electric fields from
the interferometer arms, and the visualisation of the resulting intensity as a
function of the OPD between the interfering beams. The contrast and location
of these fringes then encode the amplitude and phase of the Fourier transform
of the source brightness distribution.

The two most popular implementations of this process are shown schematic-
ally in Fig. 3. The first of these is usually referred to as “pupil plane” beam
combination (left hand panel) and involves superposing afocal beams from
each telescope at a beamsplitter plate (or its equivalent fibre- or integrated-
optics component). This is exemplified by the MIDI instrument at the VLTI.
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It is important to realise that it is at the beamsplitter plate that the fields
are added and that any optics thereafter serve only to deliver the resulting
intensity to a suitable detector. Usually a 50 : 50 splitter is employed and the
complementary outputs are focused onto two separate single pixel detectors.
If it is desired, each of these beams can be dispersed to give a 1-dimensional
array of spectro-interferometric measurements. The interferometric fringes are
visualised by deliberately introducing an OPD between the beams as a func-
tion of time. In multi-beam pupil plane combiners (see, e.g. Mozurkewich,
1994) non-redundant modulation of the optical paths in each beam is used
to give rise to a modulated intensity output that is separable into different
temporal frequency components. Each of these can then be attributed to a
unique interferometer baseline.

An alternative approach, used in the AMBER instrument at the VLTI, in-
volves adding the fields from each telescope in a focal plane. This is conven-
tionally called “image plane” combination and is depicted schematically in
the right hand panel of Fig. 3. This is exactly what Michelson implemented in
his stellar interferometer, with the focal plane image being crossed by fringes.
The angular size of the image will be governed by the diameters of the in-
coming beams, and will thus set the minimum detector array size, while the
fringe period, and hence the necessary pixel size, will depend on the physical
separation of the incoming beams at the focusing lens/mirror. This last point
is important to stress because it underlies the method by which multi-way
beam combination can be realised: if many beams are being interfered then
the input pupil configuration must be chosen so that every pair of beams cor-
responds to a uniquely identifiable vector separation and hence spatial fringe
period on the detector. In other words, the fringe encoding relies upon using a
non-redundant input pupil. This can often be arranged with a 1-dimensional
configuration of beams which then allows the other spatial dimension of an
array detector to be used for wavelength dispersion as in AMBER (Robbe-
Dubois et al., 2007).

The fact that the VLTI has exploited both pupil- and image-plane combiners
highlights an important lesson: while the two approaches of temporal and
spatial fringe encoding are formally equivalent, the choice as to which to use
will actually depend on considerations such as the availability of low-noise
array detectors, access to linear and fast path modulators, and the choice of
suitable optical components.

In the near future it is likely that the use of integrated optics components
may become more common in interferometric beam combiners. Results with
first-generation devices have been very successful (see, e.g. Lebouquin et al.,
2006) but what remains to be seen is how well they can be adapted to cater
for multi-beam and multi-wavelength operation.
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Fig. 3. Schematic diagrams of the optical set-ups required for two-beam pupil plane
(left) and image plane (right) beam combination. In both panels a pair of collim-
ated beams enters the beam combiner and is focused onto a detector. In the case of
pupil-plane combination, each of the two complementary outputs from the beams-
plitter is focused onto a single pixel (this is only shown for one output in the figure),
and the intensity is measured as a function of a deliberately introduced OPD. In
the image plane configuration, the intensity as a function of OPD is directly visible
as a spatial fringe pattern on an array detectors. (Figures courtesy of D. Pearson.)

7 Dealing with atmospheric perturbations: problems and solutions

A lecture on the practical aspects of ground based optical/IR interferometry
would not be complete without a significant digression on the negative impact
of the atmosphere on the capabilities of the method. This has arguably been
(and continues to be) the most important challenge for ground-based inter-
ferometers, i.e. how to overcome the seeing. The fluctuations the atmosphere
introduces into the wavefronts arriving from astronomical sources are the most
important factors limiting the astrophysical exploitation of optical/IR inter-
ferometry, and so an understanding of these perturbations is of particular
importance for us today.

A comprehensive treatment of the spatio-temporal fluctuations produced by
the atmosphere is beyond the scope of this paper, but interested readers are
encouraged to consult Roddier (1981) for an excellent overview of the subject.
To first-order, however, a useful model for the effects of the atmosphere is to
associate them with a time-varying corrugation of the wavefronts from the
source. So, we can ignore any fluctuations in the amplitude of the received
radiation but we do need to consider the impact of phase perturbations. The
questions I want to concentrate on here then are wholly pragmatic: exactly
how do these perturbations limit the ability of interferometers to secure high
quality and astronomically interesting Fourier data, and how can these limit-
ations be overcome?
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Fig. 4. The effect of spatial wavefront corrugations on interferometric measurements.
The left hand panel shows the rms visibility amplitude expected for an unresolved
star as a function of the ratio D/ro. Results for uncorrected (dashed line) and tip-tilt
corrected (solid line) optical systems are given. The right hand panel shows the
signal-to-noise ratio for power spectrum measurements for telescopes with different
levels of modal adaptive correction. Results are show for perfect 2-, 5- and 9-Zernike
mode correction, with (solid line) and without (dashed line) the use of an optical
fibre spatial filter. Note the beneficial effects of adaptive optics and spatial filtering.

7.1 Spatial fluctuations

The spatial fluctuations introduced by the atmosphere are conventionally char-
acterised by a spatial scale, Fried’s parameter, ro. This is roughly equal to the
diameter of the circular aperture over which the root mean-square wavefront
perturbation is 1 radian. Interestingly, the strength of the wavefront perturb-
ations is a strongly decreasing function of linear scale, r: the power spectrum
of the fluctuations scales as κ−11/3, where κ ∝ 1/r. This spectrum has a pole
at the origin (corresponding to the largest linear scales) and so, on physical
grounds, it is usually assumed that on scales larger than some maximum, L0,
the so-called “outer scale”, the fluctuation strength saturates.

Fried’s parameter varies with wavelength like λ6/5, and at the best astronom-
ical sites takes values of order 15 cm at 500 nm. Broadly speaking telescope
diameters, D, smaller or greater than ro will give instantaneous images that are
either diffraction limited (D < ro) or highly distorted and speckled (D > ro).
It is interesting to compare the value of the ratio D/ro at radio and optical
wavelengths. At centimetric radio wavelengths, ro is of order 30 km and so at
the Very Large Array in New Mexico D/ro ∼ 10−3. At the VLTI on the other
hand, for the 8m UTs at 2.2 µm, D/ro ∼ 11: this difference — a factor of
104 — highlights how much more of a problem the atmosphere is for us as
compared to our radio colleagues.

The impact of atmospherically-induced spatial wavefront fluctuations on in-
terferometric measurements is summarized in the left-hand panel of Fig. 4.
This shows the expected root-mean-square visibility amplitude for observa-
tions of an unresolved source (Vintrinsic = 1.0) as a function of D/ro, both with
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and without the use of a fast autoguiding system (Buscher, 1988). The major
effects of the wavefront corrugations are a rapid drop in Vrms, and a rapid in-
crease in the fluctuations of V , as the telescope size increases. Together these
lead to a loss in sensitivity (see section 8) and an increased difficulty in calib-
ration. The situation is improved with the use of a fast autoguider, but this is
only effective for aperture sizes of approximately ≤ 3ro. Beyond this, higher
order adaptive optics correction becomes necessary to limit the precipitous
drop in Vrms as the aperture size is increased.

Most optical/IR interferometric arrays use one (or both) of the following mit-
igation strategies to help moderate these performance hits:

• In principle one can measure the spatial fluctuations over each element in
the array and correct for them in real time. This basically means fitting-out
each telescope with its own adaptive optics (AO) system. The utility of AO
for interferometry is a strong function of the ratio D/ro (see Fig. 4 and
table 1). For small telescopes correction of only the tip and tilt components
of the perturbations may be adequate. However, once D/ro exceeds three,
higher order systems become desirable.

The only real problem with this approach is the need to find a AO guide
star close enough and bright enough to drive the wavefront sensor satisfact-
orily. At the time of writing (Spring 2007) the MACAO units at the VLTI
can operate using reference stars as faint at mv = 17 up to 57.5′′′ away from
the science target. For bright on-axis reference stars Strehl ratios as high as
60% at 2.2µm can be achieved, but at mv = 16.5 this is typically reduced
to of order 10%. The Strehl’s realised with off-axis reference stars will be
similarly compromised, and so unless the seeing conditions are favorable, it
may be more efficient to stop down the telescopes to reduce the value of
D/ro.

• A completely different — and passive — approach is to spatially filter the
light being delivered to the beam combiners (see, e.g. Shaklan & Roddier,
1988). This exchanges the reduced and fluctuating visibility signal provided
by a non-adaptively corrected array for a signal where the fringe visibil-
ity remains constant but where the overall optical throughput varies as a

λ/µm 1.25 1.65 2.2 10.0 20.0

ATs 4.8 3.4 2.4 0.4 0.2

UTs 21.2 15.2 10.7 1.7 0.8

Table 1
The ratio of D/ro for the auxiliary (AT) and unit telescopes (UT) of the VLTI
at different near and mid-infrared wavelengths. A median value (based on recent
statistics) of 12.6 cm for ro at 0.5µm has been assumed. Values of D/ro > 3 imply
the need for some form of moderate order adaptive optics correction to allow the
telescopes to be used effectively for interferometry.
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Fig. 5. A schematic illustration of how spatial filtering with a pinhole works. In the
bottom panels three key ideas are presented from left to right: (i) the decomposition
of the incident wavefront into a perfectly flat and a disturbed component (ii) the
origin of the focal plane fields as the Fourier transform of the fields in the aperture
(iii) the action of the pinhole as a “top-hat” filter for the focal plane field distri-
bution. The behaviour of a piece of single-mode optical fibre is similar but with a
transfer function described by the electric field profile within the fibre core.

function of time.
The physical basis for this method is the use of an optical component

which only accepts a particular spatial mode of the incident radiation field.
If this can be chosen so as to be “orthogonal” to components of the field
associated with the atmospheric perturbations, then that part of the light
can be rejected (this is depicted schematically in Fig. 5). Both pinholes and
pieces of single-mode optical fibre can act as suitable spatial filters though
to date most interferometric implementations have used fibre components.
For a critical comparison of these two implementations the interested reader
is referred to the paper by Keen et al, (2001).

A interesting trick is to take advantage of both of these methods. The effect of
this mixed strategy can be quantified by examining the signal-to-noise ratio
(S/N) for low-light-level measurements of fringe amplitudes. In this regime
a useful metric of performance is the power spectrum S/N . This is plotted,
for the photon-limited case, in the right-hand panel of Fig. 4 (Buscher &
Shaklan, 1994). The different curves show how the signal-to-noise varies with
D/ro for varying levels of adaptive correction, both with (solid lines) and
without (dashed lines) single-mode fibre spatial filtering. Several interesting
results are immediately obvious:

• It is always advantageous to use a spatial filter unless the telescope size is
smaller than or comparable to ro. However, the merit of the resulting S/N
enhancement needs to be balanced against the cost of its implementation.
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• Higher order adaptive correction is always more beneficial than lower order
correction, though once again, the cost of implementing it may outweigh its
benefit.

• For any given order of adaptive correction there will be an optimum tele-
scope size, beyond which the S/N will decrease. This will perhaps be the
most surprising result to the novice reader: what the computations reveal
is that in certain instances decreasing the telescope diameter can enhance
the sensitivity of the array.

To summarize then, reductions in fringe visibility and signal-to-noise ratio
arising from spatial perturbations in the incoming wavefronts can be usefully
moderated by exploiting adaptive optics and spatial filtering. The latter can
be used for any target, while the success of the former will rely upon the
source being bright enough to act as a wavefront reference or the presence
of a suitable natural or laser guide star. In this sense, an appropriate way
of viewing adaptive optics for interferometry is not primarily as a route for
enhanced limiting sensitivity, but rather as a means of improving the sky
coverage of interferometers and in allowing observations of moderately bright
targets to be executed more rapidly or at high spectral resolution.

7.2 Temporal fluctuations

The properties of temporal wavefront fluctuations can be characterised in a
similar fashion to their spatial counterparts, i.e. one can define a coherence
time, to, which measures the time over which the rms variation of the wavefront
phase at a fixed point reaches one radian. The precise relationship between
the spatial scale ro and the coherence time is complex. One scenario pictures
the temporal fluctuations arising from the wind-driven motion of a “frozen”
layer of turbulence past the interferometer, while another has some type of in-
situ “boiling” of the wavefronts taking place (see, e.g. St.-Jacques & Baldwin,
2000, for a discussion of this point).

For a frozen screen, where the wavefront evolution time is assumed to be much
greater than the time for the screen to blow past one of the collectors, the co-
herence time can be written as to = 0.314ro/v, where v is a characteristic
wind velocity. In this picture, large scale spatial perturbations will be associ-
ated with timescales longer than the coherence time. Values of to typical of
modern observatory sites are between 2 and 20ms at 500 nm and scale with
wavelength in the same manner as ro. For the VLTI, recent data from Paranal
give a median value of approximately 20ms at 2.2µm, or equivalently 3ms at
0.5µm. This small value of the coherence time, as compared to the exposure
times use for conventional astronomical measurements, is one of the funda-
mental problems that ground-based interferometrists have to grapple with.
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The effect of these temporal fluctuations on interferometric measurements can
be best appreciated by remembering that they arise from changes in the optical
paths along the lines of sight from the interferometric collectors to the source.
Hence, their immediate and essential affect will to add an additional random
and fluctuating component to the geometric delay. This will have three quite
distinct implications:

• Fluctuations occurring on the shortest timescales will move the interfero-
metric fringes past the detectors and reduce their measured contrast. To
limit this systematic reduction in source visibility amplitude, the basic ex-
posure time must be kept very short, of order or less than to.

• Fluctuations on longer timescales will lead to large offsets in the position
of the center of the coherence envelope. For Kolmogorov turbulence the
rms optical path difference, σopd, for a baseline of length B is equal to
0.417λ(B/ro)

5/6 (see, e.g. Davis et al., 1995). On all but the very shortest
baselines this fringe motion will likely exceed the coherence length of the
radiation being observed and so some form of slow dynamic tracking of the
white-light fringe motion will be required if fringes are to be observed.

• Unless the absolute value of the fringe motion can be monitored, measure-
ments of the phase of the interferometric fringes will no longer characterise
the phase of Fourier transform of the source brightness distribution. In this
case it becomes necessary to focus attention on phase-type observables that
remain resistant to this type of corruption if the phase data are needed.

It will be convenient to deal with these issues below by separating the solu-
tions, as before, into active and passive techniques. We will first examine
techniques for active fringe tracking.

7.2.1 Active fringe tracking

From the discussion above it should be clear that a hierarchy of fringe-tracking
solutions must exist. In order of increasing difficulty these are:

(1) Monitoring the OPD fluctuations and re-positioning the delay lines so as
to reduce the delay error to of order the coherence length, Λcoh. Fringe
data can then be secured for the fraction of the time that the random
atmospheric OPD errors compensate the delay line positioning error.

(2) Monitoring the OPD fluctuations and re-positioning the delay lines so
as to reduce the delay error to a small fraction of Λcoh. Fringe data can
then be secured continuously. This approach is usually referred to as
“coherencing” the array.

(3) Monitoring the OPD fluctuations and correcting the OPD to a small
fraction of a wavelength. Fringe data can then be secured continuously
and using long exposure times. This approach is usually referred to as
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“co-phasing” the array.

The reader should note that only the last of these possibilities allows for direct
Fourier inversion of the visibility data and so the first two approaches still need
to be combined with measurement strategies that focus on observables that
are robust to any residual delay errors.

Coherencing usually involves dispersing the fringes, mapping them onto a
2-dimensional space of wavenumber vs fringe phase, and examining the 2-
dimensional “spatial frequency” of the resulting fringes (Basden & Buscher,
2005). The value of this spatial frequency then measures the group delay,
i.e. the location of the centre of the coherence envelope, hence the alternat-
ive name “group-delay” tracking. Group delay tracking represents a trade off
between OPD sensing resolution and sensitivity. More precisely, the resolution
in delay will be equal to the coherence length of the total bandpass, λ2/∆λ, e.g.
∼ 12µm for the near-IR K-band. However, since it will take the atmosphere
some time to introduce such a large differential OPD, is will be possible to
incoherently integrate the delay signal for many coherence times. For the 20%
bandpass of the K-band an integration time as long as 30to might be suitable.
Any science data, however, must be collected using much shorter integration
times so as to limit any fringe smearing. Coherencing is the only technique
that can be utilised successfully for the faintest targets: in the photon-limited
regime it typically is at least two magnitudes more sensitive that co-phasing.

Coherencing can be contrasted with co-phasing, which has as its target “pre-
cision” correction of the atmospherically induced OPD. The basic idea is to
monitor and control any OPD errors to better than a small fraction of a
wavelength, so that the effective value of to is extended indefinitely. For the
VLTI, the goal is to limit any resulting visibility loss to less than 1%, implying
an rms OPD jitter of order 100 nm in the near-IR. This demands very rapid
estimation of the instantaneous OPD (i.e. on timescales much shorter than to)
and very low-latency control of the correcting element, hence the much poorer
limiting sensitivity as compared to coherencing.

One can consider co-phasing as “adaptive optics” for the whole interferometer,
stabilising it against temporal atmospheric fluctuations. Of course, perturba-
tions to the OPD may arise from non-astronomical sources as well and so the
success of co-phasing places quite strict demands on the optical path stability
of every element in the interferometric optical train including the interfero-
metric collectors.

There is a close relationship between our earlier discussion of adaptive optics
for spatial wavefront control and the pros and cons of phase tracking. Both
are active methods, and so both demand the presence of a suitable reference
source to provide real-time feedback on the atmosphere. This signal can come
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Fig. 6. A schematic layout of a “dual-beam” phase-tracking system such as the
PRIMA instrument at the VLTI (Delplancke et al., 2006). The telescopes simul-
taneously observe two sources, separated by a small angle δθ. The fringes from
the reference source are monitored in real-time and corrections fed to a separate
delay-line which matches the optical paths for the beams from the science target.
A high-precision internal metrology system, not shown in the diagram, is used to
tie the optical paths of the source and reference signals together.

from the science target itself, perhaps using light in a broadband channel
adjacent to the science bandpass, or from a nearby reference star. If the latter
approach is taken, this reference needs to be close (typically within a few tens
of arc-seconds at 2.2µm) to the science target.

The major difference between adaptive optics and phase-tracking becomes ap-
parent once an off-axis reference source is being used. In AO systems the off
axis beam is usually easy to deal with, because the telescope/instrument field-
of-view is usually much greater than the off-axis offset angle; this is not the
case for an interferometer. Here, the light from the reference target must be
separated from that of the science object at the telescopes and be delivered
to a separate beam combiner in the optical laboratory using an additional dif-
ferential delay line (see Fig. 6). Moreover, the optical paths of the target and
reference beams must be monitored with high precision so as to allow correc-
tion for any internal differential OPD fluctuations. The cost and complexity
of this extra hardware, together with an additional requirement that the ref-
erence source not be resolved by the interferometer baseline (hence precluding
the use of laser guide stars) means that the implementation of off-axis phase
tracking is a non-trivial exercise.

We have seen then, that in any given situation observers will have to choose
between a number of possible options for coping with the temporal fluctuations
introduced by the atmosphere. For the brightest targets on-source co-phasing
should be possible, while for fainter objects either self-referenced coherencing
or off-axis group-delay tracking or co-phasing may be available. The presence,
or not, of a suitable off-axis reference source will be a critical factor.
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Fig. 7. The basic principle of closure phase measurement as applied to a simple
3-element interferometer. Each measured visibility phase, Φ(ij), is equal to the
unperturbed visibility phase, φ(ij), to which have been added phase errors, ε(i) and
ε(j), associated with the unknown optical paths above telescopes i and j. All of
these terms cancel out when the measured visibility phases are summed “round the
loop”. This produces the closure phase, a phase-type quantity that only depends on
the source structure, and is independent of the atmospheric phase errors.

7.2.2 Passive work-arounds for temporal fluctuations

As was the case for spatial wavefront fluctuations, it is also possible to exploit
passive methods to mitigate against the temporal perturbations the atmo-
sphere introduces. These take advantage of the fact that, for a variety of
reasons, there are quantities — so called “good observables” — whose values
are resistant to the presence of wavefront phase errors.

Consider, for example, making simultaneous measurements of the visibility
function at two similar wavelengths. In the absence of a co-phasing sub-system,
the instantaneous fringe phase at each wavelength will be equal to the true vis-
ibility phase plus an unknown phase error associated with the atmospherically-
induced OPD. However, because the atmospheric optical path fluctuations are
to first order achromatic — the refractive index of air varies only slowly with
wavelength — the errors at one wavelength can be related those at any other.
Hence, the phase error measured at one wavelength can be used to correct
for the phase error at another. This method is most useful when the source
is known to be unresolved at some “reference” wavelength so that its visibil-
ity phase can be assumed to be zero there. In this case, the difference in the
measured fringe phases becomes a direct proxy for the true visibility phase
at the science wavelength. This “differential phase” technique can in fact be
used whatever the source structure is: all that is required is that the visibility
phase be known a priori at some reference wavelength. The reader should note
that the success of this method will be limited by the precision with which
the dispersive effects of the atmosphere can be modelled.

Similar “robustness” to the instantaneous atmospheric fluctuations can be
achieved by measuring visibility phases simultaneously on different baselines,
where the baselines in question form a closed loop connecting at least three
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telescopes (see Fig. 7). As the figure shows, in this case, the sum of the observed
fringe phases, the “closure phase”, is independent of the atmospheric error
terms and is hence another good observable.

It is worth commenting on the fact that the number of independent closure
triangles, Nc, that can be measured with an N -element interferometer is equal
to (N−1)(N−2)

2
so that the fraction of the visibility phase information retained

in the closure phases (f = 1 − 2
N

) rises rapidly as N increases. The increas-
ing priority given to the number of array elements in modern interferometer
designs, in part, stems from this result.

Before concluding this section, it will perhaps be useful to compare and con-
trast the differential and closure phase methods. Both are self-referenced tech-
niques, both rely upon simultaneous measurements of different perturbed
fringe phases, and both provide a signal that can be coherently integrated
over many integration times. However, while differential phase methods are
most useful when the source visibility function is known at some wavelength,
the closure phase technique is wholly independent of the source morphology.
Closure methods thus provide a powerful model-independent way of eliminat-
ing certain classes of perturbations, so-called antenna-dependent gain errors.
The temporal fluctuations of the atmosphere give rise to just such errors but
other types of error can, and do, exist and can only be overcome using other
methods. Exactly how differential- and closure-phases are interpreted and used
for interferometric science is covered in more detail elsewhere in this volume.

8 How can we quantify the sensitivity of an array?

The proper assessment of the sensitivity of an optical interferometric array
is a complicated task because, as we have seen in an earlier chapter, it can
depend on many different things. In particular, any of the following three
considerations may be the limiting factor:

• Does the target (or a suitable reference source) provide enough photons so
as to stabilize the array against temporal, and possibly spatial, atmospheric
wavefront perturbations?

• Is the science target bright enough that the integrated signal-to-noise ratio
on the visibility amplitudes and differential/closure/visibility phases is large
enough after some moderate integration time (perhaps 5 minutes or so) to
be useful?

• What is the faintest structure that can be reliably detected given the total
number and quality of the Fourier data that have been secured?
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For the purpose of our treatment today, I want to focus on only the first of these
criteria. For ground-based arrays, which have to operate in the presence of
rapidly varying atmospheric fluctuations, the ability to fringe-track will almost
always be what limits the interferometric sensitivity. Furthermore, for most
targets, the probability of finding a suitably bright and proximate reference
star will be much less than 50% and so the brightness of the science target in
some suitable waveband, which need not be the science bandpass of course, is
what will be important.

It is reasonable to assume that at the sensitivity limit of the array it will be
operating in a coherencing mode, and in this regime an appropriate metric
for success will be the signal-to-noise ratio for group-delay fringe tracking.
This takes the following form, which is characteristic of the S/N for a power-
spectrum estimator:

(S/N) '
[V N ]2

√

[(N + Ndark)2 + 2(N + Ndark)N2V 2 + 2(Npix)2(σread)4]
, (1)

where V is the apparent fringe visibility, ranging between 0 and 1, N is the
total number of photon counts detected from the source in the integration
time, Ndark is the number of dark or background counts detected in the integ-
ration time, Npix is the number of detector pixels over which the fringe signal
is spread out, and σread is the readout noise per pixel. For useful tracking we
will clearly require a signal-to-noise of order unity or above.

From the point of view of understanding what really impacts the sensitivity
of an optical interferometric array the most important fact we have to remind
ourselves of is that it is the instantaneous S/N that matters. i.e. the signal-
to-noise that is realised in a time comparable to the coherence time. This is
very different from the case where the total integration time matters, as for
example in conventional imaging and spectroscopy, and this highlights the
parallel between interferometry and adaptive optics where both demand that
light from the target be used to drive real-time active control systems. In this
sense, then, we should expect the limiting sensitivities of interferometric and
adaptive optics systems to be comparable. The fact that most ground-based
arrays struggle to observe targets of magnitude 10 in the near-infrared while
many AO wavefront sensors operate up to 5 magnitudes fainter suggests that
one can realistically expect the sensitivity of ground based arrays to improve
by at least a factor of 50 in the near term, as optimized implementations
mature.

In view of its perhaps unfamiliar nature, Eq. 1 deserves some careful scrutiny.
The numerator is simply the power spectrum signal while the denominator is
the quadrature sum of three different noise terms. From left to right these are
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Poissonian photon noise, a noise contribution associated with the fringe signal
itself, and a final term arising from readout noise in the detector. Depending
on the particular implementation selected the relative contributions of each
of these terms can vary dramatically, and so having some feel for this can be
valuable when designing a “fringe tracking engine”. In particular:

(1) Because the visibility, V , referred to in Eq. 1 characterises the visibility
of the detected fringes, it incorporates all contributions from atmospheric
and instrumental coherence losses including, e.g. the effect of the lowering
of the apparent fringe contrast when more than two beams are interfered
together at the same point.

(2) The contribution of readout noise can become dominant, especially when
the fringes are detected by a large number of pixels, e.g. when they are
being spectrally dispersed.

(3) Depending on the relative magnitudes of the terms in the denominator,
maintaining high fringe visibility, V , may become less or more important
relative to the maintenance of high throughput, i.e. N , from the point of
view of keeping the S/N high.

(4) For sources that are significantly resolved (V � 1) it may be impossible
to track fringes at all unless the target is extremely bright.

This last point is perhaps best demonstrated through an numerical example.
Consider the measurement of the diameter of a low mass star with a two-
element interferometer equipped with a photon-limited fringe sensor. Let us
assume that on a short interferometer baseline, where the star is only mod-
erately resolved (Vsource = 0.75) coherencing can be performed with a S/N of
3. Then, on a longer baseline where the fringe visibility has reduced to, say,
0.15 the signal-to-noise ratio for coherencing will have dropped by a factor of
approximately 6 and so fringe tracking may cease to be possible. This corres-
ponds to an effective reduction in the source brightness by a factor of 25 or
equivalently 3.5 magnitudes.

This variation in sensitivity with source resolution may seem unusual to the
novice interferometrist, but is a real challenge for ground-based interferometry:
how can we observe faint and resolved targets? The obvious solutions are to
either use off-axis guide stars for fringe stabilisation or to decompose all long
baselines into shorter contiguous ones, so that monitoring of the atmospheric
fluctuations can take place on baselines on which the target will not be as
resolved. Once again we can see interesting parallels with strategies used in
adaptive optics: there the use of off-axis guide stars is commonplace, as is
the use of Shack-Hartmann wavefront sensors which break up the pupil into
smaller zones across which the spatial wavefront perturbations can be relat-
ively straightforwardly measured and then “stitched” together to recover the
wavefront across the whole pupil.
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Perhaps we can console ourselves with the fact that sources that are well
matched in angular size to existing interferometers cannot be too faint: e.g., a
0.5 milli-arcsecond diameter blackbody with a temperature of 2500K will have
an apparent magnitude in the near-infrared of between 7 and 8. This is ∼ 5
magnitudes brighter than the group-delay tracking limit for an interferometer
employing 2m-class collectors, and so sources with surface brightnesses 102

times lower should still be observable. By the same token, thermal sources
that are much fainter than this are likely to subtend very small angles (i.e.
much less than half a milli-arcsecond) and so will need to wait for a next
generation of kilometric baseline arrays for their study.

9 Calibration

The calibration of interferometric measurements is a critical element of the
practice of interferometry, and will be dealt with in detail elsewhere in this
volume. However, it will be valuable to mention in passing just a few of the
strategies that can help reduce the impact of calibration errors.

The fundamental basis for needing sophisticated calibration procedures in op-
tical/IR interferometry is the sensitivity of the interferometric response to
numerous time-variable quantities. A useful way of characterising this beha-
viour is in terms of a transfer function describing how a measured quantity
— usually a visibility amplitude or phase — is related to its true value. The
key problem at optical/IR wavelengths is that these transfer functions usually
change on timescales of fractions of a second to hours due to variations in the
local seeing conditions which feed through to all of the real-time control sys-
tems. In a very real sense then, the art of optical/IR interferometry is to design
both an array and an observing strategy that delivers reliable interferometric
data in the presence of fluctuating observing conditions.

There are numerous approaches that can be exploited to assist in mitigating
the effects of variations in the interferometric response. In the following para-
graphs I outline four of these. This is clearly not a comprehensive list, but it
will hopefully give a flavour of the range of techniques that can be successfully
applied.

• The most common strategy for handling calibration issues is to interleave
observations of the science target with sources with known visibility func-
tions. This is most commonly performed by observing unresolved sources
close in both time and space to the science target. This permits statistical
calibration of the interferometric response, most frequently for visibility
amplitude calibration, but is of course dependent on the average seeing and
instrumental conditions remaining constant between observations. Suffice
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to say, the difficulties associated with finding calibrator stars of comparable
brightness and sufficient compactness close enough to the science target,
should not be underestimated (see, e.g. Daigne & Lestrade, 2003).

This type of statistical calibration can be usefully augmented by using
real-time diagnostic data from the interferometer sub-systems to character-
ise the instrumental response. Hardware components such as the fast tip-tilt
system and the delay-line metrology system can provide independent estim-
ators for the perturbations sensed by the array, and can therefore be used to
provide a first-cut calibration of the raw measurements even in the absence
of any calibrator star data.

• A quite different approach to eliminating calibration uncertainties has been
to design interferometers so as to be as insensitive as possible to the fluctu-
ating ambient conditions. We have already seen an example of this in the
use of spatial filtering. This dramatically reduces the impact of changes in
the seeing by allowing the fluctuations in seeing to impact an observable
that is only weakly related to the fringe contrast, i.e. the photometric coup-
ling into the beam combiner. This type of strategy is perhaps best described
as “ingenious experimental design” and is the mark of an experienced sci-
entist who knows what she wants to measure and designs her apparatus to
measure that alone.

• A somewhat similar technique, that has found most utility in allowing Four-
ier phase information to be recovered, has been to focus on measuring quant-
ities that are largely unaffected by the seeing conditions. The measurement
of good observables such as the closure phase is the classic example of this,
but other quantities, such as the differential phase can be equally robust to
seeing perturbations. Many of these good observables can be understood as
examples of differential measurements, where the effects of the atmosphere
essentially cancel out. They are thus much more robust against certain at-
mospherically induced systematics, but they can be just as easily comprom-
ised by instrumental biases, e.g. baseline dependent correlator errors, and
so they should not be seen a panacea for all calibration problems.

• A final approach has simply been to measure interferometric observables
whose mean properties are not systematically biased by the instrument and
atmosphere. A comparison of the effects of atmospheric phase fluctuations
on visibility amplitude and phase measurements is perhaps the clearest way
to explain this. While random atmospheric fluctuations will only ever re-

duce the measured visibility amplitude of a target, they give rise to random
zero-mean perturbations of the fringe phase. In principle then, ground-based
fringe phase measurements ought to require little calibration but only aver-
aging over many realizations of the atmosphere to produce unbiased estim-
ators. In practice, however, other practical problems preclude this possib-
ility, but it remains broadly speaking true that phase-type observables are
generally less difficult to calibrate than amplitude data.

The enumeration of a long list of possible solution strategies always engenders
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Fig. 8. Image reconstructions of a model spotted star made using visibility amp-
litudes and closure phases with two different levels of noise on the Fourier amp-
litudes. In the left hand panel a mean additive error of 0.008 has been combined
with the data while in the right hand panel the mean visibility error is 0.100. In
each case the zero-baseline visibility is 1.00 and the closure phases have typical er-
rors of 20◦. The reader should note that despite the poor visibility data used for
the right hand reconstruction, the main features of the source are still recovered,
albeit with some loss of photometric fidelity and an increase in background noise.
The small change in image size is an artifact of the software used to prepare the
images. (Figures courtesy of F. Baron.)

a risk that the earnest scientist will ignore asking an important question:
“What level of calibration is actually needed for my science?” Fig. 8 may
help to focus minds on this topic. The two panels in the figure shows image
reconstructions of a resolved stellar disk model, the differences between the two
being due to the differing level of noise added to the visibility amplitudes and
closure phases used to recover them. Both reconstructions utilized relatively
inaccurate closure phase data (σcphase = 20◦), but the visibility data used in
the left hand panel had additive noise levels equal to 0.8% of the total flux,
while the equivalent errors for the right hand panel were 12.5 times higher.

What is interesting is that in both panels most of the coarse morphological
and photometric data for the source have been correctly recovered. So, at least
for this particular situation, calibration at the 1% level would likely not have
been necessary for the purposes of determining what the target looked like.
However, the lesson to take home here is not that calibration is unimportant —
it is, principally because calibration errors may ultimately limit what science
can be delivered — but that it pays to understand in advance how small the
calibration errors really need to be.
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10 Summary

This brief review has tried to present some helpful insights into the practice of
optical/IR interferometry. It should be obvious that arrays such as the VLTI
are a testament to the efforts of numerous dedicated engineers and techni-
cians, who have risen to meet the many technical challenges that building an
interferometer entails. While I may have enumerated some of these challenges
are requirements, I hope the reader will not have been led to believe that
interferometry is difficult, but rather that all of these implementational issues
can, and are being, solved.

For those who stand to participate in our next steps on this path, I suggest
only a few words of advice: ask what is really needed, design only that, and
remember that almost every element of the system will depend on some other
part that you will have temporarily forgotten about!
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