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Abstract

In order to exploit current interferometers the observer needs to be familiar with
the process of visibility modeling. We introduce the tools that are required to allow
the construction of a proper visibility model. We start with the description of the
essential visibility analytical building blocks and then show how to arrange them
together in order to construct a more complex picture. As an example we con-
struct an analytical model of the visibility curve expected from an accretion disk
model. Finally we discuss few issues an observer should be aware of when modelling
visibilities.
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1 Introduction

Today, images are routinely produced by radio-interferometers such as the
VLA or IRAM. Yet, this is not the case in the optical domain (infrared-visible
wavelengths) where image reconstruction from a long baseline interferometer
is still a celebrated achievement 1 . Astronomers should therefore be prepared
to deal with visibility curves rather than true images. This should not prevent
them from carrying out excellent scientific observations.

The purpose of this paper is to get the reader familiar with interpreting visibil-
ity data by describing visibility signatures of the most common morphologies.
In Section 2 we recall the relation between object and visibility and introduce
the most useful morphologies: the “building blocks” of modeling. In section
3 we describe how to compose the previous elementary functions in order to

1 Hopefully with the second generation VLTI instruments this will soon not be the
case.
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build a more complex model. Actual examples extracted from the litterature
are finally presented in section 4.

It is beyond the scope of this paper to describe all the mathematical deriva-
tions, most of which are straightforward. The process of model fitting by itself
is described in Eric Thibaut’s contribution.

2 The interferometric visibility

2.1 Assumptions

The van Cittert- Zernike theorem (see C. Haniff, same volume) expresses the
link between brightness distribution I of the object and the corresponding
complex visibility ν. It is a Fourier transform.

I(α, β) =
∫ ∞

−∞

∫ ∞

−∞
ν(u, v) exp(2πi(αu + βu))dudv (1)

where (α, β) represents angular coordinates on the sky (units of radians) and
(u, v) are the coordinates describing the spatial frequencies of the brightness

distribution. We can relate u and v to the baseline vector ~B: u = Bu/λ, v =
Bv/λ where λ is the wavelength and Bu and Bv are the projection of the
baseline vector on the two axes. Units for u and v are often expressed in fringe
cycles per radian. The left part of Figure 1 illustrates these choices. Let us call
~s the vector arising from the center of the baseline and pointing towards the
source; this defines the origin of the object coordinates. The reader interested
in the orientation conventions should read D. Segransan’s contribution in this
volume.

The following discussions will be restricted to the pure monochromatic case.
Reconstructing the brightness distribution from the complex visibilities is of-
ten not as simple as inverting visibility in Equation 1; a sampling function
S(u, v) that expresses the sparse (u,v) coverage has to be introduced as a
multiplicating factor. The Fourier inversion no longer leads to the true bright-
ness distribution but rather to the brightness distribution convolved with the
“dirty” beam. Further numerical deconvolutions are required. Here we will re-
strict ourselves to the perfect and impossible case of continuous sampling, were
the relation between visibility and brightness distribution is a pure Fourier
transform.

Lastly, the complex visibility ν(u, v) is not normalized. It contains a scaling
factor that is directly proportional to the intensity of the source. Here we will
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Fig. 1. Left: notations used in this chapter to describe the interferometer plane and
the object brightness distribution plane. Right: thin ellipse in the object plane. ρ0

and ρ0 cos(i) are semi-major and semi-minor axis and Θ the inclination with respect
to the β axis (the position angle).

restrict the discussion to the normalized visibility V :

V (u, v) =
ν(u, v)

ν(0, 0)
(2)

One should keep in mind that the squared visibility is often the actual quantity
measured by interferometers.

2.2 Fourier transform

It is useful, before starting, to recall some basic properties of the Fourier
transform which links brightness distribution and complex visibility.

Addition : FT{I1(α, β) + I2(α, β)} =ν1(u, v) + ν2(u, v) (3)

Similarity : FT{I(aα, bβ)} =
1

|ab|
ν(u/a, v/b) (4)

Translation : FT{I(α− α0, β − β0)} =ν(u, v) exp[2πi(uα0 + vβ0)]
(5)

Convolution : FT{I1(α, β)× I2(α, β)} =ν1(u, v).ν2(u, v) (6)

2.3 Visibility curve for a circularly symmetric object.

When the object has circular symmetry it is easier to switch to polar co-
ordinates. The object brightness distribution being even and real, the cor-
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responding visibility will consequently be even. We define ρ =
√

α2 + β2

and Θ = atanα
β

as the polar coordinates in the object plane. We define

r =
√

u2 + v2, φ = atanv
u

are the polar coordinates in the (u,v) plane.

The expression for the visibility in polar coordinates can be extracted directly
from the inversion of relation inverse of Equation 1, it is:

ν(r, φ) =
∫ 2π

0

∫ ∞

0
I(ρ, Θ) exp(−2πi(ρr cos(Θ− φ)))ρdρdΘ (7)

Because of the symmetry I(ρ, Θ) = I(ρ) and ν(r, φ) = ν(ρ). Simplifying the
cosine expression the previous equation becomes:

ν(r) =
∫ 2π

0

∫ ∞

0
I(ρ) exp(−2πiρr cos Θ)ρdρdΘ (8)

Introducing the zeroth-order Bessel function of the first kind allows the com-
putation of the integral with respect to Θ:

J0(x) =
1

2π

∫ 2π

0
exp(−ixcosΘ)dΘ (9)

which leads to the final expression for the visibility:

ν(r) = 2π
∫ ∞

0
I(ρ)J0(2πρr)ρdρ (10)

The link between ν and I is now a Hankel transform. This expressions al-
lows us to compute visibility curves for a wide variety of distributions using
the many relations linking Bessel functions (recurrence relations, distribution
expressions etc...)

Another way of looking at Equation 10 is to consider the brightness distri-
bution of a circular ring of infinitesimally thickness (radius ρ0), which can be
represented by the following brightness:

I(ρ) =
1

2πρ0

δ(ρ− ρ0) (11)

the corresponding normalized visibility is then:

V (u, v) = J0(2πρ0r) (12)
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Fig. 2. Left: uniform disk model brightness distribution (θ = 10mas). The curve
represents a cut across the brightness distribution. Right: Corresponding visibility
curve as a function of baseline (λ = 2.2µm). The solid line is the visibility amplitude
the dashed line the complex one. Four zeros and five lobes are visible. The sign
inversion in the complex visibility curve implies a 180◦ phase shift.

2.4 Visibility building blocks

Initial observations with optical interferometers were limited to a small num-
ber of visibility points. Fitting strategy were therefore limited to “simple”
but mostly unphysical models whose goal was mainly to provide first order
(although precise) size and position angles estimations. These models are de-
scribed in table 1.

2.4.1 Point source

Mainly used as description of unresolved objects with finite energy. When
located at a distance from the pointing center (the one defined by the vec-
tor ~s) the complex visibility includes a phase shift. The expected normalized
visibility is 1 but when involved in the construction of a complex object its
flux and phase should be taken into account. The phase has an obvious linear
dependance with angular position on the sky.

2.4.2 Uniform disk

The uniform disk is the most simple model to describe the photospheric emis-
sion of a star (see Figure 2).

This is the first model to use when one wants to extract a diameter from a
visibility curve. The visibility curve has several zeroes whose positions can be
directly related with the diameter. If B1 is the baseline corresponding to the
first zero, then the diameter in milliarcseconds is θ = 251.6′′λ/B1. Finding the
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first zero is of course not mandatory, a χ2 minimization on a properly sampled
visibililty curve is the best way to get an accurate final result.

Note that Equation 18 shows that visibility changes sign as it goes through
the zero. The observational consequence of this is that the interferogram phase
shifts by 180◦. Because phase is lost in the measurement process, this won’t
be directly observable but can be recovered by the measurement of closure
phases (see J.D. Monnier same volume).

Any departure from the uniform disk model, caused for example by limb-
darkening or brightening or the presence of a hot spot, should mostly affect
spatial frequencies higher than the first null and therefore should require ex-
ploration of the second lobe. The reader is referred to the work by J. Young
(same volume) for more details.

2.4.3 Gaussian disk

The Gaussian disk brightness distribution is often used to estimate the size of
a resolved envelope with smooth limits.

2.4.4 Thin ring

The thin ring is the basic building block used to compute visibility curves of
complex centro-symmetric objects. It is particularly useful when one is able
to provide an analytical expression of radial intensity (e.g through a radiative
transfer calculation.)

3 Constructing the visibility of a complex object

We will now see how to use those visibility building blocks in order to construct
a more complex model. We will first show in section 3.1 how to modify a
visibility function to take into account an inclination and position angle effect.
Then we will see in section 3.2 how to construct the visibility curve out of the
objects subelements visibilities.

3.1 Inclined or deformed structure.

It is often the case that inclination is one of the unknown parameters when
modeling an object. Inclining with an angle i a circularly symmetric object can
be seen as the effect of applying a cos(i) compression factor along one of its
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axis (which becomes a semi-minor axis). The resulting structure displays an
elliptical central symmetry. The addition of a new parameter, the semi-major
axis orientation Θ (that we shall call position angle for convenience) is now
required.

The link between the visibility curve of a circularly symmetric intensity dis-
tribution and its inclined and rotated version is obtained by a proper change
in the baseline reference frame that takes into account a rotation:

uΘ = u cos Θ + v sin Θ

vΘ = −u sin Θ + v cos Θ
(23)

followed by a compression factor cos(i) along the proper baseline axis.

In this new reference the elliptically symmetric object recovers a circular shape
and standard visibility equations such as those described in table 1 can be
used. In that new reference the projected baseline in units of wavelength ruvΘi

can be written as:

ruvΘi =
√

u2
Θ + v2

Θ cos(i)2 (24)

As an example the visibility of a thin ellipse with semi-major axis ρ0 can be
computed from equation 10:

V (u, v) = J0(2πρ0ruvΘi) (25)

Another way to see this computation is considering that having an object
smaller in one dimension with respect to its perpendicular due to an inclination
is similar to observing a circularly symmetric object with a smaller baseline
(less resolving power) in one direction with respect to its perpendicular.

3.2 A multicomponent object.

Let us consider now an astrophysical object that can be described by the
addition of n components of known morphologies. Let us denote the brightness
distributions of such objects Ij(α, β) their position in the plane of sky being
(αj, βj) respectively and the corresponding normalized visibilities V (u, v) with
j = 1..n. To compute the normalized visibility of such an object one should
take into account their respective contributions to the total brightness, which
we will name Fj. The total brightness distribution can therefore be written:
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Fig. 3. Left: an unequal binary the plane of the sky. The binary separation ρ is 5 mas,
the PA θ = 35◦, the flux ratio 0.5, and the wavelength of observation 1.55µm. The
lines symbolizes three different baselines with different projected angles (dashed (A):
125◦, dash-dotted (B): 35◦, solid (C): 0◦). Center: Image of the square of the visibility
amplitude in the (u,v) plane obtained for such a binary. The lines show what part
of the (u,v) is explored with the previous baselines. A maximum baseline of 200 m
has been choosen here. Right: Corresponding square visibility curves corresponding
to the three baselines (see text for comments).

I(α, β) =
∑

j=1..n

Ij(α, β)δ(α− αj, β − βj) (26)

The addition property of the Fourier transform allows to write the visibility
function as:

ν(u, v) =
∑

j=1..n

FjVj(u, v) exp(2πi(uαj + vβj)) (27)

Normalization gives the final visibility:

V (u, v) =

∑
j=1..n FjV (u, v) exp(2πi(uαj + vβj))∑

j=1..n Fj

(28)

3.3 The simplest complex object: the resolved binary

Binary star observations, together with diameter measurements, are the most
widespread scientific observations made with interferometers so far. We can
now use the same procedure as described in Section 3.2 to compute the visi-
bility. The expression of the brightness distribution of a binary system (stars
S1 and S2) with separation ρ, position angle θ and respective fluxes F1 and
F2 is simply the sum of two unresolved point brightnesses (see Figure 3 and
Equation 13).
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I(α, β) = F1δ(α− α1, β − β1) + F2δ(α− α2, β − β2) (29)

where (α1, β1) and (α2, β2) are the angular coordinates for stars S1 and S2. The
corresponding Fourier transform gives the unnormalized complex visibility
function:

ν(u, v) = F1 exp(2πi(uα1 + vβ1)) + F2 exp(2πi(uα2 + vβ2)) (30)

The normalized squared visibility amplitude is then:

|V (u, v)|2 =
ν(u, v)ν(u, v)∗

|ν(0, 0)|2
(31)

=
F 2

1 + F 2
2 + 2F1F2 cos(2π(u(α1 − α2) + v(β1 − β2)))

(F1 + F2)2
(32)

where the normalisation factor is the total flux squared (ν2(0, 0)). If we intro-

duce the flux ratio f = F2

F1
the baseline vector ~B ( |B| = λ

√
u2 + v2) and the

separation vector ~ρ (|ρ| =
√

(α1 − α2)2 + (β1 − β2)2) Equation 32 becomes:

|V (u, v)|2 =
1 + f 2 + 2f cos(2π/λ ~B~ρ)

(1 + f)2
(33)

Figure 3 shows a binary example (|~ρ|= 5 mas, the PA 35◦ and f=0.5). The
corresponding squared visibility in the (u,v) plane is displayed in the center.
It has a typical rippled structure. When looking at a squared visibility curve
along three different projected baselines (at right in Figure 3) one can see
very different responses 2 . Projected baseline A is perpendicular to the line
linking the two components. Consider the analogy to the Young’s Double
Slit Experiment with two sources instead of one. If the projection of the line
between the two sources along the optical axis 3 is perpendicular to the line
between the two holes, then the optical path from one source to each of the
two slits is the same. Therefore the fringe center for the two sources will be
located at the same point in the screen whatever the distance between the
slits. No visibility variation with slit separation is to be expected.

2 These baseline coverages are of course unrealistic since earth rotation will induce
elliptical tracks in the (u, v) plane
3 The optical and pointing axis is defined for example as the line linking the center
of the two sources to the center of the two slits.
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Fig. 4. Left: squared visibility in the (u, v) plane for a binary whose two stars
have uniform disk diameters of 3 mas and are separated from each other by 8
mas (realistic ?) with a position angle 35◦ (λ = 1.55µm). The left side of the figure
displays the squared visibility expected in the (u, v) plane when the flux ratio is one.
The right side shows the squared visibility curves as a function of baseline (oriented
at PA 35◦) for three different flux ratios (solid, dash, dashdot curves respectively
correspond to f = 1, 0.1, 0.01.

Two other baselines at two different angles will lead to two curves with differ-
ent periods but the same amplitude. However it is most probable in practice
that the earth rotation will lead to non linear cuts accross the (u, v) plane.

Now let us consider that both stars have finite size, i.e can be resolved by
the interferometer. If V1(u, v) and V2(u, v) are the visibility curves for S1 and
S2 stars respectively it is easy to write the expression of the visibility for the
binary:

V (u, v) =
V 2

1 + f 2V 2
2 + 2f |V1|V2| cos(2π/λ ~B~ρ)

(1 + f)2
(34)

Figure 4 shows the squared visibility as a function of baseline for a binary
whose two stars are also resolved. The squared visibility curves appear as a
modulation of the classical uniform disk shape by a cosine function caused by
the binary. The amplitude of the modulation decreases when the flux ratio
gets smaller. For a flux ratio of f = 0.001 the influence of the companion is
barely noticeable.

In fact, Equation 34 can be used for any kind of structure involving two
different components for which individual visibilities are known, for example
a star+ envelope system.
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4 A detailed example: an accretion disk

Accretion disks are important objects in astrophysics. They can be found in
objects as different as young stars and active galactic nuclei. They are the
bridge linking a surrounding diffuse medium with the compact central object
(a star or a black-hole) and their physics, still poorly known is the subject of
active research. Infrared interferometry has allowed to observe numerous disks
around young stars with astronomical unit resolution. Analytical models of
such objects have been proposed and are extremely useful for fast simulteneous
spectral energy distribution and visibility fitting routines no narrow down
the parameter space prior to more detailed modeling. We use what has been
seen previously to describe here the visibility expression for such objects as a
function of wavelength.

The derivation adopted her can undoubtely be adapted to any analytical model
arising from radiative transfer computation.

4.1 The disk model

In its simplest version the image of an accretion disk can be seen as the con-
tinuous succession of thin circular rings with increasing radius (spanning from
rmin to rmax) surrounding a central star. The temperature radial distribution
of such as disk follows a power law:

T (r) = T0(
r

r0

)−q (35)

where r0 is a reference radius and T0 is the temperature at this distance. The
exponent q is the consequence of specific radiative transfer conditions and
varies with the disk viscosity, flaring etc...

Each annulus is considered as a blackbody emitting at temperature T (r). The
total integrated flux received from an object located at distance d from the
observer for a given wavelength is therefore the integration of all the rings
contributions:

Fλ(0) =
2π

d2

∫ rmax

rmin

rBλ(T (r))dr (36)

for an inclined disk (angle i) the received flux becomes:

Fλ(i) = Fλ(0) cos i (37)
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and the disk can be seen as the continuous succession of elliptical thin rings.
The disk position angle is Θ.

4.2 Computing the visibility

The inclined accretion disk image is described as a sum (integral) of elliptical
thin rings and therefore as we have seen in section 3.2 the corresponding
visibility is just the sum (integral) of their Fourier transform weighted by
their blackbody emission flux.

Vλ =
1

Fλ(0)

∫ rmax

rmin

rBλ(T (r))J0(2πruvΘi
r

d
) dr (38)

where

ruvΘi =
√

u2
θ + v2

θ cos(i)2 (39)

represents the projected baseline in the a new (uθ, vθ) reference frame corre-
sponding to the rotation of the array frame in the position angle Θ reference
with a cos(i) compression factor.

The interested reader can see how this model has been succesfully applied to
the peculiar case of Fu Orionis a young star observed with several interferom-
eters (Malbet et al , 2005).

5 Conclusion and recommendations

Visibility (and closure phase) modeling still has a bright future. Even when
second generation imaging instruments for Keck, Chara or MROI will be avail-
able the fourier space will remain the best place to quantify the intensity dis-
tribution through adjustment (fitting an image is hard). Moreover, it is most
probably that preliminary inspection in the visibility space will probably help
providing priors to be used by image reconstruction softwares.

A few obvious but worthwhile things remain to be recalled:

• the more complex the visibility model the more parameters will need to be
fit and therefore the more datapoints are required;

• in the context of a limited amount of attributed time the observer will have
to think carefully where in the spatial frequency space these datapoints
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should be taken. This in order to get the best constraint on the parameters.
For example, an observer interested in a diameter estimation will be wise to
get a visibility measurement as closed as technically possible from the first
zero. In the case of a binary the choice of points will have to be made so
that the visibility oscillation amplitude is correctly sampled.To summarize,
while preparing his proposal the astronomer should already try to get a global
picture of what can be expected in order to choose a pertinent telescope
configuration capable of constraining the different sizes, orientations and
flux ratios required.

• If the object’s angular size is too small to be resolved in the classical sense
(object bigger than the beam size as defined by the ration of wavelength
over the projected baseline) it is still possible to derive quantitative param-
eters from its visibility curve (exploiting the so-called “superresolution”).
This is because modeling visibilities is a deconvolution process. However,
one should remember that if components are barely resolved it will be hard
to find out which is the best choice of model, since all the basic visibilities
described earlier have quadratic dependencies toward small spatial frequen-
cies (Lachaume 2003). The definition of “barely resolved” will of course
depend on the accuracy with which the visibility measurements are made.

• The astronomer should be aware of the existence of different field of notions.
The interferometer field of view (the one of interest in the visibility mod-
elling process) is roughly λ/B. However, individual telescope arrays have
also a limited field of view which is often caused by the presence of spatial
filtering (fiber of pinhole) whose function is to improve visibility precision
or simply because light is sampled by a single pixel. This field of view is
roughly equal to the difraction limit of the telescope λ/D 4 if equipped with
adaptive optics or atmospheric seeing if not λ/r0

5 . While computing its vis-
ibility model the astronomer should keep in mind the potential presence of
a bias resulting from the presence of any emission source that is not in the
interferometer field of view but contributes to the incoherent flux because it
is in the field of view of the individual telescopes (e.g a companion and an
envelope). This will result in an underestimation of the true visibility that
can only be corrected by including the incoherent flux.

• A high visibility measured at one baseline, for example 99% can be modelled
with a small extension but bright structure or a very extented envelope with
a 1% contribution to the global flux.The additional contribution of spectral
energy distributions analysis or any other technique capable of constraining
the different objects relative flux is essential for a good visibility fit.

4 D individual telescope diameter
5 r0: is the atmospheric fried parameter
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