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Abstract

An understanding of some of the physical bases of interferometric imaging can be
helpful both in designing and understanding interferometric telescope arrays and
in planning, executing and interpreting astronomical interferometric observations.
This paper presents a brief introduction to some of these key principles at a level
suitable for those who are new to interferometry, and with particular emphasis on
four key areas: classical imaging theory, coherence functions, interferometric observ-
ables, and interferometric imaging. These topics underpin the practice of much of
interferometric astronomy (at optical as well as other wavelengths), and provide a
valuable basis from which to develop a better understanding of the operation of the
VLTI in later chapters.
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1 Introduction

It is a truth universally acknowledged — at least amongst most conventional
astronomers — that the use of interferometric methods at optical and in-
frared wavelengths requires specialised and somewhat advanced knowledge.
While the former may indeed be true, the basic physical principles that un-
derpin interferometric astrophysics are rather straightforward. Furthermore,
an understanding of some of these physical bases can be helpful both in de-
signing and understanding interferometric telescope arrays and in planning,
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executing and interpreting astronomical interferometric observations. In this
paper, I present a brief introduction to four of these key ideas, chosen so as to
benefit new users of interferometric methods in astrophysics. Such a choice will
necessarily be restrictive, but my aim has been to draw attention to themes
that focus on aspects of interferometry that are likely to be the most novel to
newcomers. For simplicity, this introductory chapter mentions only in passing
two features of the VLTI that are clearly important for observers but can be
ignored in an idealised description of interferometric practice: (i) the presence
of a turbulent atmosphere and (ii) the presence of a significant thermal back-
ground. These additional elements will be covered elsewhere in this volume.

At the risk of offending those used to more mathematical rigour, the flavour of
this presentation has deliberately been adjusted to be largely heuristic. In my
experience, confusions and misunderstandings of interferometry usually derive
from conceptual mistakes rather than from any lack of mathematical fluency.
My hope here is that by focusing on the physical bases of a small number of
topics, readers may gain enough familiarity and “feeling” for interferometric
methods that they will subsequently be able to take advantage of more detailed
and comprehensive treatments elsewhere.

By way of a final remark, readers will note that this paper contains little men-
tion of the themes of astrometric interferometry nor the use of interferometry
for extra-solar planet detection. The exclusion of these topics should not be
interpreted as any measure of their scientific merit, but merely that time and
space constraints did not permit any sensible treatment to be presented here.

2 Classical imaging theory

Fluency with the concept of the Fourier decomposition of an image is one
of the most important aspects of spatial interferometry. This is less familiar
than the usual description of an image as the convolution of the true source
brightness distribution with a point-spread function (PSF), but the two are
very closely related. We can see this as follows.

Under most conditions 1 the fundamental relationship between the brightness
distribution of a source, O(α, β), and the image delivered, I(α, β), can be
written as (e.g. Goodman, 1996):

I(α, β) =
∫∫

P (α − α′, β − β ′) O(α′, β′) dα′ dβ′, (1)

1 More specifically, when the source is spatially incoherent, i.e. there is no fixed
phase relationship between the electric fields emitted from different parts of it, and
when the performance of the imaging system does not vary with field angle.
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where α and β are co-ordinates on the sky, and P (α, β) is the assumed space
invariant PSF. For the case of an unaberrated telescope with a circular pupil,
the PSF will be an Airy pattern. If we take the Fourier transform of each side
of this equation we obtain:

Ĩ(u, v) = T̃ (u, v) × Õ(u, v), (2)

where Ĩ(u, v) and Õ(u, v) refer to the Fourier transforms of the real space
brightness distributions, u and v are the reciprocal co-ordinates to α and β,
and the properties of the imaging system are now encapsulated in a multi-
plicative transfer function, T̃ (u, v). The co-ordinates u and v have dimensions
of inverse radians, and are usually referred to as spatial frequencies.

In general, the transfer function, which is simply the Fourier transform of the
PSF, is obtained from the auto-correlation of the complex pupil function, A:

T̃ (u, v) =
∫∫

A∗(x, y) A(x + u, y + v) dx dy. (3)

Here x and y represent co-ordinates in the pupil, and the function A(x, y)
has an amplitude between unity and zero (depending on the strength of the
electric field it transmits at position (x, y)) and an argument that is related to
the relative phases of the wavefront transmitted by different parts of the pupil.
Importantly, for each spatial frequency, u, there is a corresponding physical
baseline in the pupil of length λu.

An example of a typical transfer function and its associated PSF are shown in
Fig. 1. In this case, for a circularly symmetric aperture, the transfer function
has been written as a function of a single co-ordinate, T (f), with f 2 = u2 +v2.

T(f)

Fig. 1. Schematic plots of the transfer function (left) and point-spread function
(right) of a diffraction-limited circular aperture. Note how the transfer function falls
smoothly to zero at a spatial frequency, fmax = D/λ, determined by the aperture
diameter, D, and the wavelength of observation. The form of the PSF, e.g. its
characteristic width, sidelobe levels etc, are uniquely determined by the transfer
function. For a circular pupil the PSF has a full width at half maximum of ∼ 1.0λ/D.
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2.1 Image formation - key ideas

As far as helping our understanding of interferometry, there are three key
lessons to be learnt here:

• The formal equivalence of the decomposition of an image into a series of
spatially separated PSFs or a series of non-localised sinusoids (i.e. Eq. 1 and
Eq. 2 are a Fourier transform pair). Note that in the former of these cases
“good” point spread functions will necessarily be compact, whereas in the
latter the basis functions (sines and cosines) are completely non-localised.

• The description of an image in terms of its Fourier components, and the
action of an incoherent imaging system as a filter of the spatial Fourier
spectrum of a source. In this sense, all images — even diffraction limited
ones — are merely filtered, and hence imperfect, representations of what is
in the sky.

• The association of each Fourier component (or spatial frequency) measured
by an imaging system with a real physical baseline (or baselines) in the
aperture that samples the radiation from the source, and an understanding
that the form of the PSF arises from the relative sampling — and hence
weighting given to — the different spatial frequencies measured.

As we will see later, interferometry as applied to astrophysics can be under-
stood as the process by which the Fourier components that describe the source
brightness distribution are measured individually. From a user’s perspective
one may ask: “Why follow this tedious procedure at all?” The answer is quite
simple: as well as permitting investigations on angular scales much smaller
than could be realised with any monolithic optical/infrared telescope, the use
of an interferometer allows the astronomer to selectively probe any particu-
lar Fourier component of interest by choosing an appropriate interferometer
baseline. How exactly the amplitudes and phases of these complex quantities
might be measured will be the subject of the next two sections.

3 Coherence functions

The fundamental basis for the use of interferometry in astronomy arises from
two physical laws, the Weiner-Khinchin theorem and the van Cittert-Zernike
theorem (e.g. Born & Wolf, 1999). While the derivations of these two theorems
are interesting in themselves, we need only familiarise ourselves of their content
for the purpose of this review.

Consider a simple two-element interferometer interrogating the light from a
distant source, as shown in Fig. 2. In the most general case, the radiation
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Fig. 2. Schematic cartoon of a two-element interferometer sampling the radiation
from a distant source. The two sample points are located at r1 and r2, and the
distance to the source, R is assumed large enough that the source is in the far-field.

is assumed to be sampled at two different locations, ~r1 and ~r2, and at two
different times, t1 and t2, and the quantity of interest is the correlation of
the measurements of the two electric fields, i.e. 〈E∗(~r1, t1) × E(~r2, t2)〉. Here,
angle brackets refer to a time average over a period that is long compared
to the oscillation time of the electric field. Note that the correlation function
will in general be complex, and that each of the detected E fields is itself a
summation of elemental contributions from each part of the source, which we
assume to be temporally and spatially incoherent with respect to each other.

We will be interested in two simplified cases of this experiment; the first when
~r1 = ~r2 but t1 6= t2, and second, where the measurement points are spatially
separated, but the measurements occur at the same time. In both of these
cases it can be shown that the correlation (or coherence) function will be a
function only of the difference in the time or space co-ordinates.

3.1 The temporal coherence function

In the case of the measurement of the electric field at the same location, but
at different times, we can define the so-called temporal coherence function as:

〈E∗(~r1, t1) × E(~r2, t2)〉 = V (~r − ~r, t1 − t2) = V (~0, τ). (4)

This function measures the extent to which the electric fields along a given
wave train are correlated in time and is basically the quantity that a labora-
tory based Michelson interferometer measures. Its importance for astronomers
arises from the Weiner-Khinchin theorem, which states that the normalised
value of the temporal coherence function is equal to the Fourier transform of
the normalised spectral energy distribution of the source, i.e.:

Vt(τ)

Vt(0)
=

∫

B(ω) exp(−iωτ) dω
∫

B(ω) dω
, (5)
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where we have use the shorthand notation Vt to denote that the spatial argu-
ment of the coherence function is zero. Measurement, and subsequent corre-
lation, of the electric fields at a point, thus allows the recovery of the source
spectrum via an inverse Fourier transform if measurements of Vt(τ) are made
for a suitable sample of delays, τi.

Since the temporal coherence function and source spectrum are a Fourier pair,
a broad spectral energy distribution will lead to a coherence function that
decays rapidly, while a monochromatic source will have a coherence function
that is equal to unity for all values of τ . It is useful to define a “coherence time”
for the radiation such that tcoh ∼ 2π/∆ω, where ∆ω is its spectral bandwidth.
This timescale basically measures the maximum time delay allowed between
the measurements of the radiation field such that the coherence function will
still have a non-zero value.

3.2 The spatial coherence function

In the case associated with measuring the electric field from a source at two
locations but at the same time we can define the so-called spatial coherence
function as:

〈E∗(~r1, t1) × E(~r2, t2)〉 = V (~r1 − ~r2, t − t) = V (~ρ, 0). (6)

This function measures the extent to which the electric fields perpendicular to
a wave train are correlated in space and is basically the quantity that a Young’s
double slit experiment measures on axis. Its importance for astronomers arises
from the van Cittert-Zernike theorem, which states that for sources in the far
field the normalised value of the spatial coherence function is equal to the
Fourier transform of the normalised sky brightness distribution, i.e.:

Vr(~ρ)

Vr(0)
=

∫

I(~α) exp
(

−i2π (~α·~ρ)
λ

)

dα
∫

I(~α) dα
, (7)

or in the notation of Equations (1) and (2):

Vr,norm(u, v) =

∫∫

I(α, β) exp (−i2π(uα + vβ)) dα dβ
∫∫

I(α, β) dα dβ
. (8)

As before, α and β are co-ordinates in the sky, whereas u and v are the com-
ponents of the vector baseline between the two sampling points projected onto
a plane perpendicular to the source direction and measured in wavelengths.
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In this second example, therefore, measurement, and subsequent correlation,
of the electric fields at two different points, allows the recovery of the source
structure via an inverse Fourier transform if measurements of Vr(u, v) are made
for a suitable set of vector baselines, {ui, vi}.

3.3 Coherence functions - key ideas

Perhaps the most unusual aspects of interferometry are those summarised in
the previous two subsections, i.e. that it is straightforward, in principle, to
recover details of both the spectrum and structure of an astronomical source
without any imaging or dispersing optics but simply by investigating correla-
tions in the electric field the source delivers. This is a rather beautiful result,
especially as the Fourier relationship between the source structure and spec-
trum and the two coherence functions is so simple. Were this relationship not
linear and invertible, then it is possible that interferometric methods might
not featured in astrophysics at all to date.

For the most part, we shall be interested in the spatial coherence or “visibil-
ity” function, as we will refer to it henceforth, since it is this that contains
information about the structure of the source in the sky and which the VLTI
has been designed to measure and exploit.

Summarising the previous two sections of this treatment, we can see then
that, in a very simple way, the practice of astronomical interferometry involves
nothing more than four key elements:

• The idea of representing a brightness distribution in the sky as a superpo-
sition of sine and cosine functions, i.e. a Fourier decomposition.

• The use of measurements of the spatial coherence function as a direct proxy
for the strengths of these Fourier components, i.e. exploitation of the van
Cittert-Zernike theorem.

• An understanding that different configurations of sample points with pro-
jected separations Bi will give rise to measurements of the value of the
Fourier transform of the source brightness distribution at spatial frequen-
cies ui = Bi/λ.

• The idea of a final step — to be elaborated on in Section 5 — where the
Fourier data are either interpreted or inverted to establish the details of the
source morphology.

In the meantime, exactly how we can access the time averaged products of
field quantities such as 〈E∗(~r1) × E(~r2)〉 will be the subject of the next section.
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4 Interferometric observables

At first sight, measurement of the visibility function appears to require direct
access to the amplitude and phase of the electric field. While this may be
possible at radio wavelengths, optical and near-infrared detectors are generally
square-law devices (i.e. they measure the intensity of the electric field and not
its amplitude or phase) and so there is often confusion as to how it is actually
possible to measure the visibility function at all. As we shall see below, both
the amplitude and phase of the visibility function are encoded in an intensity
pattern that can trivially be characterised by any square-law detector.

4.1 An aside on measuring coherence functions

We can best understand how optical coherence functions are measured by
considering a simple Young’s double slit experiment. In this case, at any given
point on the image plane, for example at the on-axis point, the observed
intensity will be given by the modulus squared of the summation of the electric
field arriving from the two slits. If we call these E1 and E2, we can write the
detected intensity as:

I = 〈(E1 + E2)
∗ × (E1 + E2)〉

=
〈

|E1|
2
〉

+
〈

|E2|
2
〉

+ 〈E1E
∗

2〉 + 〈E∗

1E2〉

=
〈

|E1|
2
〉

+
〈

|E2|
2
〉

+ 〈2 |E1| |E2| cos(φ)〉 , (9)

where φ is the phase difference between the electric field components E1 and E2

and the angle brackets refer to the usual time average. The first two terms of
this equation obviously refer to the mean intensity seen in the double-slit fringe
pattern, while the third term, which is associated with the modulation of the
fringes from light to dark, clearly encodes the values of the complex products
〈E1E

∗

2〉 and 〈E∗

1E2〉, i.e. the visibility function and its complex conjugate.
Thus the observed modulation of the intensity in the detector plane directly
measures the complex visibility (coherence) function.

There are two key features of the detected fringe pattern that are of interest
(see the left hand panel of Fig. 3). The first is the fringe amplitude. This is a
measure of the fringe contrast, sometimes known as the “Michelson visibility”,
and is related to the measured maximum and minimum intensities in the fringe
pattern by:

VMichelson =
Imax − Imin

Imax + Imin

. (10)
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Fig. 3. Figures showing the individual monochromatic responses (left) and the re-
sulting fringe pattern for a polychromatic source (right), for a simple two element
interferometer. In both cases the intensity output is plotted as a function of optical
path difference between the interfering beams. For the polychromatic fringe pattern
a spectral bandpass of 0.1 µm centred on 0.75 µm has been assumed together with
a visibility amplitude of 0.5. (Figure courtesy of D. Pearson.)

For example, for all the monochromatic fringes shown in the left hand panel
of Fig. 3, the visibility amplitude is equal to unity.

The second key observable is the fringe phase. This is the location of the central
fringe with respect to the location of the zero optical path difference (OPD)
position. Typically the fringe phase is known modulo-2π, with 2π radians
corresponding to an offset of a whole fringe period. In Fig. 3 both the left and
right hand panels depict fringe patterns with phases of zero.

The crucial point to note is that the fringe visibility amplitude and phase
defined in this way directly measure the amplitude and phase of the complex
visibility (or coherence) function. There is thus no fundamental difficulty in
measuring the coherence function with a square-law detector, since its prop-
erties are encoded very straightforwardly in an observable intensity pattern.

4.2 The output of a 2-element interferometer

In order to develop the mathematical formalism needed in the next subsection,
it is helpful to focus again on a simple 2-element interferometer and explore
how its output varies as a function of a number of key instrumental parameters.
In Fig. 4 we can identify five primary functional components of the hardware
associated with such an interferometer:

• A pair of collectors, located at positions x1 and x2, whose role is to sample
the radiation from the source. The direction to the source is characterised
by the “pointing direction”, ~s. It is usual to refer to the vector between the
collectors as the “baseline vector”, ~B.

• A “beam relay system” whose role is to transport the radiation sampled
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to a central laboratory where the signals can be mixed and the resulting
outputs detected. We will refer to the total optical paths from each collector
to the location at which the signals are finally mixed as d1 and d2.

• An apparatus to compensate for the “geometric delay”, i.e. the additional
optical path experienced by the light travelling to the collector more distant
from the astronomical source. The magnitude of this additional path is given
by ~̂s · ~B, where ~̂s is a unit vector in the pointing direction. This additional
optical path is usually introduced using a movable carriage carrying retro-
reflecting optics, the whole mechanism being called a delay line. In Fig. 4
two delay lines are shown, allowing for variable extra optical paths to be
introduced into the beams from each collector independently.

• A device to combine the electric fields sampled by the collectors. This is
usually referred to as the “beam combiner”.

• A detector to sample the output of the beam combiner. This is usually some
form of low-noise fast-readout detector.

Fig. 4. A schematic cartoon showing the key functional elements of a simple 2-ele-
ment interferometer. Light from the two collectors travels along the optical paths
d1 and d2 and is interfered and detected at the “beam combiner” in the centre of
the figure. Further details of the function of the hardware elements depicted here
can be found in the main text.
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Using the nomenclature introduced above, we can describe the monochromatic
electric fields arriving at the beam combiner as:

Ψ1 = A1 exp
(

ik
[

~̂s · ~B + d1

])

exp (iωt) (11)

and

Ψ2 = A2 exp (ik [d2]) exp (iωt) , (12)

so that, assuming equally sensitive collectors (i.e. A1 = A2), the resulting
intensity can be written as:

Idetected =
〈

|Ψ1 + Ψ2|
2
〉

∝ 2 + 2 cos
(

k
[

~̂s · ~B + d1 − d2

])

∝ 2 + 2 cos (kD) , (13)

where D =
[

~̂s · ~B + d1 − d2

]

.

This co-sinusoidal variation of the intensity is the quintessential feature of the
interferometric output, and has maxima separated by ∆d1 or 2 = λ, ∆(~̂s · ~B) =
λ, or ∆k = 2π/D.

As a consequence, if we wish to visualise the interferometric fringes on a
detector, at least three possible methods exist: (i) we can deliberately alter
the optical path in one or both of the array arms — this is usually referred
to as modulating the OPD (ii) we can wait for the source to move in the
sky — in this case changes in the scalar product of the pointing vector and
the baseline vector will produce an output that oscillates at a characteristic
frequency known as the ”fringe rate” or (iii) in the polychromatic case, for
non-zero values of D, we can disperse the output and examine the fringes
as a function of wavenumber — this is usually referred to as a ”channelled
spectrum” response.

We can extend our monochromatic treatment to the polychromatic case by
integrating Eq. 13 over the spectral bandpass detected to give, for example,
for a uniform bandpass centred on λ0 of ±∆λ/2:

Idetected ∝

λ0+∆λ/2
∫

λ0−∆λ/2

2 [1 + cos (2πD/λ)] dλ

∝ ∆λ

[

1 +
sin(πD∆λ/λ2

0)

(πD∆λ/λ2
0)

cos (k0D)

]
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∝ ∆λ

[

1 +
sin(πD/Λcoh)

(πD/Λcoh)
cos (k0D)

]

, (14)

where we have introduced a length scale, Λcoh = λ2
0/∆λ, called the coherence

length, and k0 = 2π/λ0. The essential difference between the monochromatic
and polychromatic responses is thus a modulation of the fringes by the so-
called “coherence envelope” 2 .

The left and right hand panels of Fig. 3 show plots of the monochromatic
(left) and polychromatic (right) output of a 2-element interferometer as a
function of D. In the monochromatic case, the fringe maxima for different
colours all overlap when the OPD between the interferometer arms is zero, but
each monochromatic response has a period that depends on the wavelength of
observation. It is the ”washing out” of the different fringe maxima and minima
at non-zero OPD that leads to a polychromatic response with modulated
fringe contrast, and it is this that gives rise to the real need for delay lines in
any interferometric implementation. Importantly, unless the optical paths are
matched to much better than Λcoh, the measured fringe visibility amplitude
will no longer be a faithful measurement of the source coherence function,
but will instead measure the product of the true visibility amplitude with a
scale factor associated with the value of the coherence envelope at the OPD
obtaining when the data were collected.

4.3 Extended sources: a heuristic and a mathematical interlude

Before presenting a somewhat more formal mathematical development of the
response of an interferometer to an extended source — all we have mentioned
previously has assumed an unresolved target — it is helpful to review what
happens for a very simple extended source, e.g. a binary star consisting of two
unequal unresolved components.

The basic argument can most easily followed with reference to Fig. 5. Here,
each component of the binary produces its own fringe pattern, with unit visi-
bility amplitude and a visibility phase that will be associated with the location
of that element in the sky (see the two leftmost columns of the figure). For
any spatially incoherent source, which is likely to be true for all optical/IR
astronomical sources, the actual interferometer output for a extended source
will be the intensity superposition of these individual ”elemental” fringes: this
is shown in the rightmost column of the panel. As is evident from Fig. 5,
the resultant interferometric fringes will thus neither have unit contrast, nor
a phase equal to the fringe phase of either of the elemental fringe patterns

2 Radio interferometrists usually refer to this as the “delay beam”
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Fig. 5. A heuristic explanation of how the output of an interferometer encodes the
source brightness distribution. The two left hand columns show the interferometer
output produced by the two separate components of an unequal binary, while the
rightmost column depicts the actual detected output (i.e. the superposition of the
two fringe patterns). The resulting fringe contrast and location are clearly a function
of the overall source brightness distribution (See text for details. Figure courtesy of
T.R. Scott.).

from which they are formed 3 . Hence, in some yet to be quantified sense, the
form of the overall brightness distribution must be encoded in the resulting
non-unit-contrast interferometer output.

A more formal description of this process can be presented as follows. Consider
the observation of a extended monochromatic (the extension to a polychro-
matic source is straightforward) source, whose brightness distribution on the

sky is written as I(~s0 + ~∆s), where ~s0 is a vector in the pointing direction and
~∆s is a vector perpendicular to this in the plane of the sky (see the left hand
panel of Fig. 6). If we integrate the monochromatic response (Eq. 13) over the

3 The careful reader will note that since the sum of two sine waves of the same
frequency is another sine wave of the same frequency (but with a different amplitude
and phase) the resulting fringe pattern has the same period as its component fringes.
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Fig. 6. Figures showing the coordinate systems used in the text of subsection 4.3. The
left hand panel refers to the co-ordinates describing the locations of each element
of the source, with the origin at the centre of the interferometer baseline. The
right hand panel shows the {u, v, w} coordinate frame in which the baseline vectors
are measured and the {α, β, γ} frame which is conventionally used to describe the
brightness distribution on the celestial sphere. The w axis points in the direction of
~s0 from the centre of the interferometer baseline.

extent of the source we find:

Idetected(~s0, ~B) ∝
∫

I(~s) [1 + cos (kD)] dΩ

∝
∫

I(~s)
[

1 + cos
(

k
{

~s · ~B + d1 − d2

})]

dΩ

∝
∫

I(~s)
[

1 + cos
(

k
{[

~s0 + ~∆s
]

· ~B + d1 − d2

})]

dΩ

∝
∫

I(~s)
[

1 + cos
(

k
{

~s0 · ~B + ~∆s · ~B + d1 − d2

})]

dΩ

∝
∫

I( ~∆s)
[

1 + cos
(

k
{

~∆s · ~B
})]

dΩ′. (15)

Note that in the final step, we have assumed that d1 − d2 is chosen to exactly
cancel the geometric delay term, ~s0 · ~B, and we have changed the dummy
variable of integration to signify summation over all possible values of ~∆s.

Consider now, adding a small path delay, δ, to one arm of the interferometer.
In this case the response becomes:

Idetected(~s0, ~B, δ) ∝
∫

I( ~∆s)
[

1 + cos
(

k
{

~∆s · ~B + δ
})]

dΩ′

∝
∫

I( ~∆s) dΩ′ + cos (kδ) ·
∫

I( ~∆s) cos
(

k
{

~∆s · ~B
})

dΩ′

− sin (kδ) ·
∫

I( ~∆s) sin
(

k
{

~∆s · ~B
})

dΩ′. (16)

This expression can be rewritten in a shorter form as:

Idetected(~s0, ~B, δ) ∝
∫

I( ~∆s) dΩ′ + cos (kδ)< [Q] + sin (kδ)= [Q]

∝ Itotal + < [Q exp (−ikδ)] , (17)
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where we have use Q to represent the quantity
∫

I( ~∆s) exp
(

−ik ~∆s · ~B
)

dΩ′,
and < and = denote taking the real and imaginary part respectively.

If we look at Eq. 17, we can see that if we record the interferometer output
for, say, two values of δ (e.g. 0 and λ/4), then this will allow recovery of the
complex value of Q to within a multiplicative constant. The importance of
this result can be understood by reminding ourselves what Q itself measures.
If we look at the right hand panel of Fig 6 we can use the {u, v, w} and

{α, β, γ} coordinate systems to write ~̂s0 as (0, 0, 1) and ~∆s as (α, β, 0) so that
the quantity Q can be rewritten as:

Q =
∫

I( ~∆s) exp
(

−ik ~∆s · ~B
)

dΩ′

=
∫

I(α, β) exp (−ik [αBx + βBy]) dα dβ

=
∫

I(α, β) exp (−i2π [αu + βv]) dα dβ, (18)

where u (= Bx/λ) and v (= By/λ) are the projections of the baseline on a
plane perpendicular to the pointing direction. The astute reader will recognise
the function Q as the same coherence (or visibility) function we introduced
in Sec. 3.2, and the co-ordinates u and v as the same “spatial frequencies”
we introduced much earlier when describing the Fourier decomposition of a
source brightness distribution.

We have thus finally arrived at our key results:

• The interferometric output encodes the real and imaginary parts of the
quantity Q.

• This quantity Q is nothing more than a sample from the 2-dimensional
Fourier transform of the source brightness distribution.

• The particular sample of the Fourier transform selected is determined by
the instantaneous projected baseline.

We can thus view interferometers simply as rather sophisticated “engines”
that allow us to measure the Fourier content of the sky brightness.

4.4 Interferometric measurements - key ideas

At this point it is probably worth reviewing what we have learnt: there are
only two key ideas, but it will not harm us to reiterate them again here!

First, is the idea of the interferometric output encoding the complex Fourier
transform of the source brightness distribution. This is as true at optical wave-
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lengths as it is in the radio, and so identifies optical/IR interferometry as a
true analogue of what has been commonplace in the radio for many years.

Second, we have the idea that extracting the complex visibility function nec-

essarily involves examining the co-sinusoidal variation of the interferometric
output in some way. In the example described above, we considered the in-
troduction of two deliberate OPD settings, but in general many other imple-
mentations can be envisaged. The interested reader can find further details on
these practical issues in other chapters in this volume.

5 Interferometric imaging

We have seen in the previous sections that the fundamental processes involved
in interferometric astrophysics are relatively straightforward. Interferometers
measure the Fourier transform of the source brightness distribution, and so,
in principle, only three steps are involved in mapping the sky this way:

Step 1 Measurement of the visibility function, V (u, v), with as many different
interferometer baselines as possible, i.e. at as many spatial frequencies u and
v as possible.

Step 2 Calibration of the measurements to remove any instrumental modifi-
cation to the measured complex amplitudes and phases.

Step 3 Fourier inversion of the calibrated date to recover the source bright-
ness distribution, I(α, β).

In practice, of course, the details involved in these processes demand much
attention, and a proper treatment of all of them would require a lengthy
volume to do them justice. Instead, in the following subsections we will briefly
examine three of these issues to get a feel as to what type of thinking might
usefully be involved in preparing an interferometric observation.

5.1 Visibility functions

The behaviour of the source visibility function with interferometer baseline
and in particular how its amplitude changes, is of major interest when plan-
ning interferometric observations. This is because the amplitude of V (u, v)
tells us the apparent contrast of the interference fringes, and our ability to
measure the parameters of the fringes is a very strong function of the fringe
contrast. For example, in the faint source photon-limited case, a reduction in
the fringe contrast by a factor of 10 needs an increase in source brightness of
a factor of 100 to maintain the same signal-to-noise on the fringe parameter
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Fig. 7. Plots showing the amplitude of the visibility function for two 0.005 arcsecond
sized sources as a function of interferometer baseline. The left hand panel is for a
binary star comprising two unresolved components with a 2 : 1 intensity ratio while
the right hand panel is for a uniform disk. In both cases an observing wavelength of
2 µm has been assumed, and the interferometer baseline has been oriented parallel
to the direction in which the source is extended. Negative values for the visibility
amplitude correspond to a phase of the visibility function of −π radians.

measurements. It is no wonder that most sensitivity calculations for interfer-
ometers assume a source producing unit contrast fringes!

Examples of the behaviour of two “typical” visibility functions are shown in
Fig. 7. The left hand panel shows the visibility amplitude for a 5-milliarcsecond
binary as a function of the interferometer baseline. The modulation of the
visibility amplitude is the characteristic signature of a binary target. The
period of the modulation encodes the binary separation — larger separations
give a more rapid modulation — and the modulation depth the intensity ratio
of the components. Although not shown here, the visibility phase also displays
oscillations and these are similarly informative.

The right hand panel shows the equivalent data for a 5-milliarcsecond diameter
uniform disk source. This again shows a modulated visibility function, but
demonstrates a new feature that is typical of targets that are fully resolved,
i.e. an overall reduction in visibility amplitude with increasing baseline. Most
importantly, information on structures smaller than the disk size (θdisk) will
correspond to measurements of the visibility amplitude on baselines longer
than λ/θdisk, i.e. where the visibility amplitude will be ¿ 1.

In summary, then, the two panels of Fig. 7 draw attention to a number of
important “home truths”.

• First, that distinguishing between different source morphologies requires
measurements of the visibility function on many different baselines, with
changes in visibility amplitude and phase encoding the source structure.

• Second, that measurements on baselines at least as long as λ/θ are required
for unambiguous study of a target that has an angular size of ∼ θ.
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• Finally, that for resolved targets, the expected fringe contrast is likely to be
much much lower than the unit visibility amplitude that point-like sources
will produce, and hence difficult to measure with good signal-to-noise.

This last point is probably the most difficult one to address from an experi-
mental point of view, and represents a significant challenge for the designers of
modern facility arrays which must be able to operate operate efficiently when
observing resolved, and hence, scientifically exciting targets.

5.2 The practice of imaging and some useful rules of thumb

The examples in the previous subsection show that simple features (e.g. sepa-
rations and flux ratios) of a source can be inferred directly from measurements
of V (u, v). However, unambiguous recovery of a faithful high resolution image
of the target is clearly an attractive goal to consider.

We can begin by reminding ourselves of the fundamental relationship between
the visibility function and the normalised sky brightness distribution:

Inorm(α, β) =
∫∫

V (u, v) exp (+i2π {αu + βv}) du dv . (19)

In practice, however, we will only have a sampled version of V (u, v), and so
image recovered by a Fourier inversion will be the so-called “dirty map”:

Fig. 8. Simulated dirty (left) and deconvolved (right) images for a target comprising
a number of resolved components. Both panels have contours plotted at -10, -5,
-2, -1, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, and 90% of the peak flux. Negative
contours are shown dashed. While the source is barely visible in the dirty image,
it is straightforward to deconvolve the map and correct for the interferometer PSF.
The noise in the right hand panel reflects the number and quality of the data used
in the simulation. The small grey ellipse in the bottom left hand corner of the panel
shows the size of the core of the PSF, i.e. the resolution in the restored map.
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Idirty(α, β) =
∫∫

S(u, v) · V (u, v) exp (+i2π {αu + βv}) du dv (20)

= Bdirty(α, β) ∗ Inorm(α, β) , (21)

where S(u, v) is the sampling function describing which measurements of
V (u, v) have been secured, and Bdirty(α, β) is the Fourier transform of the
sampling distribution. This is known as the “dirty beam” and is simply the
PSF of the interferometer. It is usually far less attractive than an Airy pattern,
e.g. exhibiting strong and numerous sidelobes, but it is completely determined
by the known sampling of the Fourier plane.

Thus, despite the unusual form of the interferometric PSF, its behaviour will
generally be well understood and it can be accounted for very straightfor-
wardly. This process of correcting an interferometric image for the Fourier
plane sampling is know as deconvolution and can be performed using many
schemes such as CLEAN, MEM, and WIPE (see, e.g., Cornwell et al. (1999);
Lannes et al. (1994)). Fig. 8 shows an example of this type of deconvolution
in practice with “before” and “after” images for a simulated observation of a
resolved source. It is interesting to note how difficult the source is to discern
in the dirty map, yet how successful the deconvolution is.

Fortunately, most of the rules-of-thumb developed for radio interferometric
imaging can be translated almost unchanged to the optical/IR domain. We
mention here two sets of guidelines that may be helpful to newcomers.

From the point of view of imaging in general, the following four rules-of-thumb
are often useful:

• If one wishes to recover an image with some number of filled pixels, i.e. pixels
containing source flux, then the total number of visibility amplitudes and
phases secured should be at least as great as this number. This places a
very high premium on collecting the Fourier data efficiently.

• The distribution of samples of V (u, v) should be as uniform as possible so
as to aid deconvolution and deliver a representation of the sky that is not
skewed towards any particular part of the spatial frequency spectrum.

• The range of angular scales expected in an interferometric image will be
limited by the ratio of maximum to minimum baseline length. This can
often be rather small for interferometers with small numbers of collectors,
even using Earth rotation to alter the projected baseline lengths.

• For a source of maximum extent θmax, there will be no need to sample
V (u, v) any more finely that ∆u ∼ 1/θmax.

Another area in which some general comments may be helpful concerns the
field of view that one can hope to map with an interferometric array. These
can be summarised as follows:
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• At the largest angular scales, all interferometers are limited by the field of
view of the individual collectors. This is usually referred to as the “primary
beam” by radio interferometrists, where it has the more specific meaning of
the beam pattern of an individual collector on the sky.

• In practice, vignetting along the optical train from the collectors to the beam
combiner is likely to restrict the field of view much more tightly, usually to
no more than a few seconds of arc for most optical/IR arrays.

• In the context of Fourier imaging, a further limitation will come from the
shortest interferometer baseline, Bmin. An array will not generally be sensi-
tive to structures much larger than ∼ λ/Bmin and so these will simply not
appear in any image reconstructed from the visibility data.

• Finally, for arrays that utilise non-homothetic beam combiners 4 , the field
of view will be limited by the ability of the delay lines to adequately correct
for the geometric delays associated with the directions of different parts of
the source. In quantitative terms, this implies that the field of view will
be no greater than approximately [λ/Bmax][λ/∆λ], i.e. the product of the
spatial and spectral resolutions.

Finally, we can say something about the dynamic range, i.e. the ratio of the
maximum intensity in an image to the minimum believable intensity, and the
fidelity of interferometric images. Experience with radio interferometers has
shown that dynamic ranges in excess of 105:1 are possible, but more typical
values for snapshot images are of order a few hundred to one. A reasonable
estimate for what can be expected can be obtained by multiplying square
root of the total number of visibility data by the signal-to-noise per datum.
For example, measurements on one hundred different baselines, each with a
signal-to-noise of ten, could potentially be assembled to produce a map with
a dynamic range of 100:1. Assessing the fidelity of the such a map is quite
another matter, but would likely depend on issues such as the completeness
of the Fourier plane sampling etc.

It is worth reiterating that these comments should not be taken as “truths”
but rather as general guidance for use when preparing an interferometric ob-
servation. Furthermore, in many cases the recovery of an image may neither
be necessary nor desirable: one can often make significant advances in under-
standing using much fewer data. No one should forget that the art of interfer-
ometric astrophysics, and indeed of many branches of experimental physics, is
often tied to designing observational strategies that provide the most scientific
leverage for the minimum expenditure of effort!

4 This basically means that the output pupil of the interferometer optics is not a
scaled version of the input pupil

20



5.3 Sensitivity

The question of the sensitivity of optical/IR interferometry is a very frequent
one for newcomers. Give that arrays like the VLTI have to operate in the pres-
ence of atmospheric fluctuations, the answer draws heavily on the experience
of adaptive optics experiments. If we interpret the question to mean: “What
is the faintest source that can be detected in an interferometric map?”, then
there will be will be three interconnected components to the answer:

• First, the “source” — this can either be the science target itself (an any
suitable wavelength) or any suitable “reference” target — must be bright
enough to allow stabilisation of the interferometric optical paths so that
interference fringes can be usefully measured at all.

• Second, the science target must be bright enough such that a useful signal-
to-noise can be built up on the visibility amplitudes and phases when av-
eraged over time. The reader should note that the rotation of the Earth
(and hence changes in the projected baselines) will mean that the maxi-
mum time allowed per Fourier plane measurement will be limited to only a
few minutes.

• Finally, the faintest features detectable will be determined by the dynamic
range in the recovered image, which will in turn depend on both the total
number and quality of the visibility data.

In general, then, the issue of sensitivity is a complex one, and is best deter-
mined on a case-by-case basis. Suffice to say, at present, the typical dynamic
ranges that have been demonstrated in the near-infrared are of order 100:1,
and science targets with magnitudes of order 7 in the K band have been
routinely observed. It is certain that both of these numbers will be revised
significantly over the next 5 years, as the latest 2nd-generation facility inter-
ferometers reach maturity.

6 Summary

Hopefully this lecture has provided some useful pointers to “what matters” to
those who are new to how interferometric arrays like the VLTI work. This has
necessarily been an incomplete survey, but my hope is that this brief foray
will have helped set the scene, and that subsequent contributions will help
develop a better feel for the real scientific excitement that a new window on
the Universe can bring.
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