Young Stellar Objects: The Inner AU

John D. Monnier University of Michigan

Art Credit: Luis Belerique

Collaborators

Bill Danchi (NASA-GSFC) Mike Ireland (Caltech) Wes Traub (CfA) Rachel Akeson (Caltech) Ettore Pedretti (UM)

Rafael Millan-Gabet (Caltech)

Peter Tuthill (Sydney) Ajay Tannirkulam (Michigan) Jean-Philippe Berger (Grenoble) Theo ten Brummelaar (GSU)

and IOTA/iKeck/CHARA teams

Young Stellar Objects (Near-IR)

In the early 1990s, our story begins with the progenitors of intermediate-mass stars: <u>the Herbig Ae/Be stars</u>

- The higher-mass counterparts to *T Tauri stars* (solar-type progenitors)
- T Tauri disks were relatively "well understood"
 - Geometrically thin
 - Optically thick
 - Possible Accretion Luminosity

Physical Process: thermal emission from hot dust accreting onto young stars

Standard Disk Model for Young Stellar Object

Matter Falls onto Star (accretion)

Gas only

Dust Evaporation Front

Gas and Dust in Keplerian orbits

Art Credit: Luis Belerique

Visibility: Star + Dust Shell

The IOTA Interferometer located on Mt. Hopkins, AZ

•Mainly developed by Smithsonian Astrophysical Observatory (Traub, Carleton, Papaliolios, Monnier, Berger, Pedretti,...) and Univ. of Massachusetts (Schloerb, Millan-Gabet)

•Initial Capabilities: 2 movable 40-cm telescopes with maximum 38-m separation (~8 milliarcsecond resolution in near-IR)

Surprise: The disk around AB Aurigae TOO BIG!

"Classic" accretion disk model, used for SED fitting, is RULED OUT by IOTA!

Towards Imaging: Closure Phases with IOTA3

VLTI EuroSummer School J. D. Monnier -- Phases in Interferometry

07 June 2006 11

Atmosphere Corrupts the Phase, but...

The "Closure Phase" Is Not Corrupted

Expected Closure Phases for YSOs

Closure Phase is function of •Amount of <u>skewness</u> (deviation from centro-symmetry) •Resolution of Interferometer (point sources all look symmetrical..) •Brightness distribution (model-dependent = good)

Expected Closure Phases for YSOs

Closure Phase is function of

- •Amount of **<u>skewness</u>** (deviation from centro-symmetry)
- •Resolution of Interferometer (point sources all look symmetrical..)
- •Brightness distribution (model-dependent = good)

Simple Empirical Models of Asymmetric Disk Emission

Special Case: AB Aur Disk

A Closure Phase Mystery (from Millan-Gabet et al. 2006)

AB Aur Results

Long Baselines -> zero closure phase Point-Symmetric on scales of 4-10 milliarcseconds

Short Baselines -> non-zero closure phase Asymmetric on scales of 10-50 milliarcseconds 4 degrees corresonds to ~7% asymmetry

What could this be?

Table 1. Results from Fitting to "Disk Hot Spot" Model^a

Model Description	Frac Star	tion of I Disk	Light Spot	Disk Properties	Spot Properties	Reduced χ^2 (V ² ,CP)
Unresolved hot spot with non-skewed disk ^b	0.3	0.68	0.02	Ring Diameter 3.6 mas Ring Width/Diameter 0.25	Unresolved Spot $r_G = 9 \text{ mas at PA } 22^{\circ}$	1.5
Gaussian hot spot with skewed disk	0.3	0.62	0.08	Ring Diameter 3.1 mas Ring Width/Diameter 0.5 Max Skew=1.0 at PA 172°	Gaussian FWHM 12 mas r_G =29 mas at PA 12°	1.8

Concluding Advice

Work on Phases for your thesis (visibilities are so last-generation)

Lots of potential science using differential phase, closure phase, precision phases.

Make it happen!

VLTI EuroSummer School J. D. Monnier -- Phases in Interferometry