An introduction to modelling interferometric data.

Euro Summer School Observation and Data reduction with the Very Large Telescope Interferometer 4–16 June 2006, Goutelas (France)

> J.P. Berger¹ & D. Segransan² 1-Laboratoire d'Astrophysique de Grenoble 2-Observatoire de l'Université de Genève

> > June 5th 2006

VLTI EuroSummer School

J.P. Berger & D. Ségransan

Measuring visibilities with an interferometer

Practical application of the Van-Cittert Zernike theorem

 $I(\alpha,\beta)$ The VCZ theorem links the intensity distribution of an object in the plane of the sky (in the far field) to the complex visibility measured in the array plane. $V(u,v) = \frac{\int \int I(\alpha,\beta) \exp^{-2i\pi(\alpha u + \beta v)} d\alpha d\beta}{\int \int I(\alpha,\beta) d\alpha d\beta}$

This relation is a fourier transform. Spatial frequency coordinates $u=Bx/\lambda$, $v=By/\lambda$ where Bx and By stand for projected baselines coordinates on the x,y axes of telescopes

Measuring visibilities with an interferometer

This talk is about what you could do to with that ...

Simple first step: parametric analysis using basic visibility functions.

VLTI EuroSummer School

J.P. Berger & D. Ségransan

Model fitting

This talk adresses the basic issues of interpreting visibilities directly

Realistic in the VLTI AMBER and MIDI contexts

Model fitting in the visibility domain is a very attractive complement (alternative) to imaging:

- Domain where measurements are made-> errors easier to recognize
- When (u,v) plane sampling is poor
- Might be better to address some issues such as source variability

OUTLINE

- 1. Modeling visibilities: principles.
- 2. Some useful basic functions.
- 3. Practical issues.
- 4. Conclusion

Ad-hoc modeling

Fourier transform properties Use of basic intensity distribution functions. Important first step towards modeling with real physical model

Fourier transform properties:

- 1. Addition $FT\{f(x,y) + g(x,y)\} = F(u,v) + G(u,v)$
- 2. Convolution $FT{f(x,y) \times g(x,y)} = F(u,v).G(u,v)$
- 3. Shift theorem $FT\{f(x x_0, y y_0) = F(u, v) \exp[2\pi i(ux_0 + vy_0)]\}$
- 4. Similarity theorem $FT\{f(ax, by)\} = \frac{1}{|ab|}F(u/a, v/a)$

VLTI EuroSummer School

J.P. Berger & D. Ségransan

Gaussian brightness distribution.

Uniform disk (example 1)

Determination of uniform diameter of Psi Phenicis with VLTI/VINCI Second lobe points are the most constraining

VLTI EuroSummer School

J.P. Berger & D. Ségransan

Uniform disk (example 2)

Determination of uniform diameter of Archenar (VLTI/ VINCI) at different positions angles shows evidence for flattening due to to fast rotation (Dominiciano da Souza et al A&A 2003).

VLTI EuroSummer School

J.P. Berger & D. Ségransan

Binary (unresolved)

Binary squared visibility curve as function of hour angle (Ming et al in preparation, observed at IOTA with IONIC)

Resolved bi-structure

Use: Describing any multicomponent structure.

$$V^{2}(u,v) = \frac{r_{ab}^{2} * V_{a}^{2} + V_{b}^{2} + 2r_{ab}|V_{a}||V_{b}|\cos(2\pi \vec{L_{b}s}/\lambda)}{(1+r_{ab}^{2})}$$

Where Va and Vb are respectively the visibility of object A and B at baseline (u,v)

Generalization:

$$V(u, v) = \frac{\sum_{i=1}^{k} F_i V(u_i, v_i)}{\sum_{i=1}^{k} F_i}$$

VLTI EuroSummer School

J.P. Berger & D. Ségransan

Unresolved ring & Ellipse

Use: allowing to describe a more complex centro-symmetric structure and compute its visibility e.g: an accretion disk made of a finite sum of annulii with different effective temperatures

Circularly symmetric component

Circularly symmetric component I (r) centered at the origin of the (x,y) coordinate system.

The relationship between brightness distribution and visibility is a Hankel function

$$\left[V(\rho) = 2\pi \int_0^\infty I(r) J_0(2\pi r \rho) r dr\right] \quad \text{with} \quad \rho = \sqrt{u^2 + 1/2} + \frac{1}{2} \int_0^\infty I(r) J_0(2\pi r \rho) r dr$$

VLTI EuroSummer School

J.P. Berger & D. Ségransan

day June 2006

 v^2

Pushing the limits

VLTI EuroSummer School

J.P. Berger & D. Ségransan

Small diameter estimation

Model fitting is also a deconvolution process: sizes estimates or positional uncertainties can smaller than the canonical resolution (the "beam" size"): super resolution

First measurements of M dwarfs stars diameters (Segransan et al, 2003).

Look how small visibilities

are. No need for zero visibility measurements to retrieve diameters

VLTI EuroSummer School

J.P. Berger & D. Ségransan

Degeneracy at small baselines

If the object is barely resolved the exact brightness distribution is not crucial - the dependance is quadratic for all the basic functions: visibility accuracy is mandatory

Modelisation of accretion disk emission around young star AB Aur. Both gaussian, uniform disk and ring fit visibilities equally well

VLTI EuroSummer School

J.P. Berger & D. Ségransan

Pushing the limits: debris disks by interferometry

(Absil et al 2006)

Larger than angular resolution $(\lambda/b) \rightarrow$ contributes as an incoherent flux

Induces a visibility deficit at all baselines Best detected at short baselines

Flux ratio $V^{2} \approx (1 - 2f) \left(\frac{2J_{1}(\pi b\theta / \lambda)}{\pi b\theta / \lambda} \right)^{2}$

VLTI EuroSummer School

Conclusion

- ✓ Visibility study without imaging can be efficient.
- The (u,v) coverage strategy is different from imaging. Limited allocated time means limited (u,v) points.
- ✓ Use basic models in order to prepare your observation and determine what is the more constraining configuration.
- Visibility space is the natural place to understand the errors of the final result.
- Always start by describing your observations in terms of basic functions. It brings quantitative information useful for further more detailed computations.