An introduction to modelling interferometric data.

Euro Summer School
Observation and Data reduction with the Very Large Telescope Interferometer 4-16 June 2006, Goutelas (France)
J.P. Berger ${ }^{1}$ \& D. Segransan ${ }^{2}$

1-Laboratoire d'Astrophysique de Grenoble
2-Observatoire de I'Université de Genève

June 5th 2006

Imaging and visibilities

Image : $\mathrm{I}(\mathrm{x}, \mathrm{y})=\mathrm{O} * \mathrm{PSF}$
$N(u, v) \not \mathcal{F}^{\&}$ cut-off frequency at D/ λ
Example : resolved binary star at Canada-France-Hawaii Telescope

Measuring visibilities with an interferometer

Practical application of the Van-Cittert Zernike theorem

This relation is a fourier transform. Spatial frequency coordinates $u=B x / \lambda, v=B y / \lambda$ where Bx and By stand for projected baselines coordinates on the x, y axes of telescopes

Measuring visibilities with an interferometer

The visibility space

Measuring visibilities with an interferometer

Measuring visibilities with an interferometer

The visibility space

Projected baseline in x dimension (Bx) in m or V coordinate (in m/lambda)

In fact with one visibility measurement with one baseline you are only sampling one spatial frequency component of the visibility amplitude.

Measuring visibilities with an interferometer

This talk is about what you could do to with that ...

Simple first step: parametric analysis using basic visibility functions.

Model fitting

This talk adresses the basic issues of interpreting visibilities directly

\longmapsto Realistic in the VLTI AMBER and MIDI contexts

Model fitting in the visibility domain is a very attractive complement (alternative) to imaging:

- Domain where measurements are made-> errors easier to recognize
- When (u,v) plane sampling is poor
- Might be better to address some issues such as source variability

OUTLINE

1. Modeling visibilities: principles.
2. Some useful basic functions.
3. Practical issues.
4. Conclusion

Ad-hoc modeling

Fourier transform properties
Use of basic intensity distribution functions .

Important first step towards modeling with real physical model

Fourier transform properties:

1. Addition
2. Convolution
3. Shift theorem
4. Similarity theorem $\operatorname{FT}\{f(a x, b y)\}=\frac{1}{|a b|} F(u / a, v / a)$

Amplitude $=1$, linear dependence for the phase

Gaussian brightness distribution.

Use: Estimate for angular sizes of envelopes-disks etc

$$
\begin{gathered}
I(r)=\frac{I_{0}}{\sqrt{\pi / 4 \ln 2} a} \exp \left(-4 \ln 2 r^{2} / a^{2}\right) \\
V
\end{gathered}
$$

Where a: FWHM intensity, Io Peak intensity

$$
\begin{aligned}
& \text { with } \left.\begin{array}{l}
r=\sqrt{x^{2}+y^{2}} \\
\text { with } \\
\rho=\sqrt{u^{2}+v^{2}}
\end{array}\right) .
\end{aligned}
$$

Uniform disk

Use: aproximation for brightness distribution of photospheric disk.

$$
\begin{aligned}
& \mathrm{I}(\mathrm{r})=4 /\left(\pi a^{2}\right), \text { ifr }=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}} \leq \mathrm{a} / 2 \\
& \mathrm{I}(\mathrm{r})=0 \text { otherwise }
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow \\
& F(\rho)=\frac{J_{1}(\pi a \rho)}{\pi a \rho} \text { with } \rho=\sqrt{\mathrm{u}^{2}+\mathrm{v}^{2}}
\end{aligned}
$$

a: diameter
Sophistication of the model $I=f(r)$, limb darkening Cf Young

Uniform disk (example 1)

Determination of uniform diameter of Psi Phenicis with VLTI/VINCI
Second lobe points are the most constraining

Uniform disk (example 2)

Binary
 Unresolved

$A \delta(x, y)+B \delta(x-s x, y-s y)$ with $s=\sqrt{s x^{2}+s y^{2}}$

$$
\begin{aligned}
\mathrm{V}(\mathrm{u}, \mathrm{v}) & =\sqrt{\frac{1+r_{a b}^{2}+2 r_{a b} \cos 2 \pi \overrightarrow{L_{b} \vec{s} / \lambda}}{1+r_{a b}^{2}}} \\
\text { with } \mathrm{r}_{a b} & =\mathrm{A} / \mathrm{B} \\
\text { with } \vec{L}_{b} & =\text { Baseline vector }
\end{aligned}
$$

Binary (unresolved)

Projection of baseline in the The visibility amplitude squared

Squared visibility curves for three baselines as a function of baseline length

Binary (unresolved)

Binary squared visibility curve as function of hour angle (Ming et al in preparation, observed at IOTA with IONIC)

Resolved bi-structure

Use: Describing any multicomponent structure.

$$
V^{2}(u, v)=\frac{r_{a b}^{2} * V_{a}^{2}+V_{b}^{2}+2 r_{a b}\left|V_{a} \| V_{b}\right| \cos \left(2 \pi \overrightarrow{L_{b}} \vec{s} / \lambda\right)}{\left(1+r_{a b}^{2}\right)}
$$

Where Va and Vb are respectively the visibility of object A and B at baseline (u, v)

Generalization:

$$
V(u, v)=\frac{\sum_{i=1}^{k} F_{i} V\left(u_{i}, v_{i}\right)}{\sum_{i=1}^{k} F_{i}}
$$

Resolved bi-structure (example)
 Binary made of two resolved

 photometric disks: d=3mas, PA:35deg

Unresolved ring \& Ellipse

Use: allowing to describe a more complex centro-symmetric structure and compute its visibility e.g: an accretion disk made of a finite sum of annulii with different effective temperatures

$$
I(r)=1 /(\pi a) \delta(r-a / 2)
$$

$$
V(\rho)=J_{0}(\pi a \rho)
$$

Transformations

Circularly symmetric component

Circularly symmetric component I (r) centered at the origin of the (x, y) coordinate system.

$$
\text { with } \quad r=\sqrt{x^{2}+y^{2}}
$$

The relationship between brightness distribution and visibility is a Hankel function

$$
V(\rho)=2 \pi \int_{0}^{\infty} I(r) J_{0}(2 \pi r \rho) r d r \quad \text { with } \quad \rho=\sqrt{u^{2}+v^{2}}
$$

The modeling process.

Pushing the limits

Small diameter estimation

Model fitting is also a deconvolution process: sizes estimates or positional uncertainties can smaller than the canonical resolution (the "beam" size"): super resolution

Degeneracy at small baselines

If the object is barely resolved the exact brightness distribution is not crucial - the dependance is quadratic for all the basic functions: visibility accuracy is mandatory

Modelisation of accretion disk emission around young star AB Aur. Both gaussian, uniform disk and ring fit visibilities equally well

Detecting extended emission (Momier e tal Apl 2006)

Visibility drops rapidly: attributed

Pushing the limits: debris disks by interferometry

(Absil et al 2006)
Larger than angular resolution $(\lambda / b) \rightarrow$ contributes as an incoherent flux
Induces a visibility deficit at all baselines Best detected at short baselines

Flux ratio
 $$
\mathcal{V}^{2} \approx(1-2 f)\left(\frac{2 J_{1}(\pi b \theta / \lambda)}{\pi b \theta / \lambda}\right)^{2}
$$

Pushing the limits: debris disks by interferometry

Conclusion

\checkmark Visibility study without imaging can be efficient.
\checkmark The (u,v) coverage strategy is different from imaging. Limited allocated time means limited (u,v) points.
\checkmark Use basic models in order to prepare your observation and determine what is the more constraining configuration.
\checkmark Visibility space is the natural place to understand the errors of the final result.
\checkmark Always start by describing your observations in terms of basic functions. It brings quantitative information useful for further more detailed computations.

