General theory of data reduction

EuroSummer School

Observation and data reduction with the Very Large Telescope Interferometer

Goutelas, France
June 4-16, 2006

Guy Perrin
Observatoire de Paris
12 June 2006

Outline

1. The different types of beamcombiners
2. What's the issue?
3. The noises
4. Single-mode interferometers
5. Estimators
6. An example of Fourier estimator
7. Estimating error bars and calibrating visibilities

Outline

\checkmark The different types of beamcombiners
2. What's the issue?
3. The noises
4. Single-mode interferometers
5. Estimators
6. An example of Fourier estimator
7. Estimating error bars and calibrating visibilities

The co-axial or ''Michelson-type'’ beamcombiner

Temporal coding beam combiner:

The opd is temporally modulated : $I(t)=I_{0}(1 \pm V \cos (2 \pi \sigma v t))$

Fourier transform

The multi-axial or "Fizeau-type" beamcombiner

1974 Labeyrie fringes
Spatial coding beam combiner:

The opd is spatially modulated: $I(\theta)=\left(\frac{2 J_{1}\left(\pi \frac{D}{\lambda} \theta\right)}{\pi \frac{D}{\lambda} \theta}\right)^{2} \times\left(1+V \cos \left(2 \pi \frac{B}{\lambda} \theta\right)\right)$

The multi-axial or "Fizeau-type" beamcombiner

B / λ and θ are conjugate variables through the Fourier Transform

Type of beam combiner considered here

I will use the formalism of the co-axial beam combiner in the following.

Both are actually fully equivalent to within some details in the equations.

Outline

\checkmark The different types of beamcombiners
\checkmark What's the issue?
3. The noises
4. Single-mode interferometers
5. Estimators
6. An example of Fourier estimator
2. Estimating error bars and calibrating visibilities

What's the issue?

A priori no issue.

We just need to measure a modulation.

Chris's first lecture:

$$
P\left(s_{0}, B, \delta\right)=I_{\text {total }}\{1+\operatorname{Re}[V \exp [-i k \delta]]\}
$$

The visibility can easily be measured by sampling δ at 0 and $\lambda / 4$:

$$
\left\{\begin{array}{l}
\operatorname{Re}[V]=\frac{P\left(s_{0}, B, 0\right)}{I_{\text {total }}}-1 \\
\operatorname{Im}[V]=\frac{P\left(s_{0}, B, \lambda / 4\right)}{I_{\text {total }}}-1
\end{array}\right.
$$

What's the issue?

Unfortunately atmospheric piston makes a very bad joke:

$$
\begin{gathered}
P\left(s_{0}, B, \boldsymbol{\delta}\right)=I_{\text {total }}\left\{1+\operatorname{Re}\left[V \exp \left[-i k \delta-i \varphi_{p}\right]\right]\right\} \\
\left\{\begin{array}{l}
\frac{P\left(s_{0}, B, 0\right)}{I_{\text {total }}}-1=\operatorname{Re}\left[V \exp \left[-i \varphi_{p}\right]\right] \\
\frac{P\left(s_{0}, B, \lambda / 4\right)}{I_{\text {total }}}-1=\operatorname{Im}\left[\exp \left[-i \varphi_{p}\right]\right]
\end{array}\right.
\end{gathered}
$$

Such a linear estimator of the visibility unfortunately does not work (yet ?) as the phase is corrupted by piston

Non-linear estimators are needed to estimate the visibility modulus and phase separately

Classical visibility estimator

The Michelson estimator:

$$
|V|=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}
$$

Works well on:

But not so well on real data like:

Why?

Estimators robust to noise are necessary

Outline

\checkmark The different types of beamcombiners
\checkmark What's the issue ?
\checkmark The noises
4. Single-mode interferometers
5. Estimators
6. An example of Fourier estimator
7. Estimating error bars and calibrating visibilities

From an ideal to a real noisy interferogram

1. Additive noise

Ideal interferogram:

$$
P\left(s_{0}, B, \delta\right)=I_{\text {total }}\{1+\operatorname{Re}[V \exp [-i k \delta]]\}
$$

With photon and detector noise:

$$
\left\{\begin{array}{l}
P_{n}\left(s_{0}, B, \boldsymbol{\delta}\right)=P\left(s_{0}, B, \boldsymbol{\delta}\right)+n_{\mathrm{det}}+n_{p h} \\
\operatorname{rms}\left(n_{p h}\right)=\sqrt{P\left(s_{0}, B, \boldsymbol{\delta}\right)}
\end{array}\right.
$$

With instrument and sky background noise:

$$
\left\{\begin{array}{l}
P_{n, b}\left(s_{0}, B, \delta\right)=P\left(s_{0}, B, \delta\right)+n_{\operatorname{det}}+n_{p h}+\operatorname{Back}(t)+n_{\operatorname{Back}(t)} \\
\operatorname{rms}\left(n_{B a c k(t)}\right)=\sqrt{\operatorname{Back}(t)}
\end{array}\right.
$$

From an ideal to a real noisy interferogram

1. Additive noise

Pure random noise
Only averages down to zero

Removable with the chopping technique (residuals will remain) See L9 by O. Chesneau

From an ideal to a real noisy interferogram

2. Multiplicative noise

Ideal interferogram:

$$
P\left(s_{0}, B, \delta\right)=I_{\text {total }}\{1+\operatorname{Re}[V \exp [-i k \delta]]\}
$$

Interferogram with unbalanced beams:

$$
P\left(s_{0}, B, \delta\right)=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+2 \sqrt{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}} \times \operatorname{Re}[V \exp [-i k \delta]]
$$

Fringe contrast (phase unchanged):

$$
\begin{gathered}
C=\frac{2 \sqrt{P_{A} P_{B}}}{P_{A}+P_{B}} \times|V| \\
P_{A}=2 P_{B} \Rightarrow C=0.94 \times V
\end{gathered}
$$

From an ideal to a real noisy interferogram

2. Multiplicative noise

Interferogram with turbulence:

$$
P\left(s_{0}, B, \boldsymbol{\delta}\right)=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+2 \sqrt{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}} \times e^{-\sigma_{\varphi}^{2}} \times \operatorname{Re}\left[V \exp \left[-i k \delta-i \varphi_{p}(t)\right]\right]
$$

$e^{-\sigma_{\varphi}^{2}}$ is the coherent energy, σ_{φ}^{2} is the phase variance over the pupil

Instantaneous fringe contrast:

$$
C=\frac{2 \sqrt{P_{A} P_{B}}}{P_{A}+P_{B}} \times e^{-\sigma_{\varphi}^{2}} \times|V|
$$

This is a real catastrophy when the turbulence is not stable which unfortunately is the case in real life

The visibility bias decreases with the visibility

Outline

\checkmark The different types of beamcombiners
\checkmark What's the issue ?
\checkmark The noises
\checkmark Single-mode interferometers
5. Estimators
6. An example of Fourier estimator
2. Estimating error bars and calibrating visibilities

Different ways to handle the turbulence issue

1. Don't do anything and assume that turbulence issues do not have an impact on the science case
2. Stop the telescope pupils down to less than r_{0}
3. Use a perfect adaptive optics system and flatten the corrugated wavefront
4. Use a different technique to flatten the wavefront
5. Mix of 3 and 4

The difficulty of interferometry without modal filtering

Ridgway et al. (1992)

Way out: spatial filtering

Better way out: modal filtering

The spatial profile of the exit beam is the profile of the fiber fundamental mode (close to a gaussian).

The phase is flat in the waveguide. The spatial coherence is maximum.
The phase fluctuations of the input beam are traded against intensity fluctuations of the output. But these fluctuations can be measured.

Single-mode beam combiner

FLUOR (Fiber Linked Unit for Optical Recombination)

Precursor of the VINCI instrument on VLTI

Interferometric equation, revisited

$$
P\left(s_{0}, B, \delta\right)=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+2 \sqrt{\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}} \times e^{-\sigma_{\varphi}^{2}(t)} \times \operatorname{Re}\left[V \exp \left[-i k \delta-i \varphi_{p}(t)\right]\right]
$$

With beams A and B modally filtered:

The maximum fringe contrast is the instantaneous atmospheric contrast:

$$
C_{a t m}(t)=\frac{2 \sqrt{P_{A}(t) P_{B}(t)}}{P_{A}(t)+P_{B}(t)}
$$

Hence the visibility after photometric beams have been measured:

$$
|V|=C(t) / C(t)_{a t m}
$$

The coherence loss due to turbulence has been removed.

Same object, with modal filtering

It is time for a 5 minute break

Outline

\checkmark The different types of beamcombiners
\checkmark What's the issue ?
\checkmark The noises
\checkmark Single-mode interferometers
\checkmark Estimators
6. An example of Fourier estimator
7. Estimating error bars and calibrating visibilities

The phase of visibilities

Phase estimator

Measurement modulo 2π : $A B C D$ method

The optical path difference is sampled at 4 points : $0, \lambda / 4, \lambda / 2$ et $3 \lambda / 4$

Phase estimator

Multi- 2π phase measurements.
Channeled spectrum
Example 1: dispersed mode

Group delay technique

transform

$$
\Longrightarrow \varphi=2 \pi \sigma_{0} x_{0}
$$

Phase estimator

Multi- 2π phase measurements.

Example 2: co-axial and non-dispersed fringes in wide band
$\xrightarrow[0]{ }$

$$
\varphi=2 \pi \sigma_{0} x_{0}
$$

Visibility estimator

Some vocabulary first

The measured fringe contrast needs to be calibrated to be useful otherwise it is dramatically biased by coherence losses (polarization, dispersion, atmosphere, ...)

Fringe contrast before calibration:
$\mu \quad$ Coherence Factor or Uncalibrated Visibility

Fringe contrast after calibration (the observable linked to the object):

V Visibility or Calibrated Visibility

Visibility estimator

$$
V \text { or } V^{2} ?
$$

By V, interferometrists indeed mean $|V|$
The data reduction process provides a noisy estimate of $|V|$

The noise applies to the complex quantity V and therefore the estimated fringe contrast for each individual scan is corrupted by noise so that:

$$
\tilde{V}=V+n \quad \text { and } \quad|\tilde{V}|=|V+n|
$$

When averaging individual visibility estimates to improve the SNR:

$$
\langle | \tilde{V}\rangle=\langle | V+n|\rangle \neq|V|
$$

Visibility estimator

$$
V \text { or } V^{2} ?
$$

The $|V|$ estimator is therefore biased by additive noise.
The bias is all the larger as the visibility is low or as the source is faint The solution is to average $|V|^{2}$ instead of $|V|$

$$
\begin{aligned}
\left.\left.\langle | \tilde{V}\right|^{2}\right\rangle & \left.\left.=\langle | V+\left.n\right|^{2}\right\rangle=\left.\langle | V\right|^{2}+2 \times \operatorname{Re}\{V n\}+|n|^{2}\right\rangle \\
& \left.\left.=\left.\langle | V\right|^{2}\right\rangle+\langle 2 \times \operatorname{Re}\{V n\}\rangle+\left.\langle | n\right|^{2}\right\rangle \\
& \left.=|V|^{2}+2 \times \operatorname{Re}\{V\langle y\rangle\}+\left.\langle | n\right|^{2}\right\rangle \\
& \left.=|V|^{2}+\left.\langle | n\right|^{2}\right\rangle
\end{aligned}
$$

Visibility estimator

$$
V \text { or } V^{2} ?
$$

The $|V|^{2}$ estimator is biased but can easily be unbiased
The real $|V|^{2}$ estimator is:

$$
\left.\left.\tilde{V}^{2}=\langle | V+\left.n\right|^{2}\right\rangle-\left.\langle | n\right|^{2}\right\rangle
$$

An unbiased estimator of the squared visibility is therefore obtained by subtracting the variance of the additive noise

This is why interferometrists talk about V^{2} instead of V

Visibility estimator

How is μ^{2} measured?

Very traditionally, a Fourier analysis of the fringe pattern is performed

Visibility estimator

How is μ^{2} measured ?

With a wide spectral band:

$B(\sigma)$ is the spectrum of the source

The integral of the PSD is proportional to $\left\langle\mu^{2}(\sigma)\right\rangle_{b a n d}$

Outline

\checkmark The different types of beamcombiners
\checkmark What's the issue ?
\checkmark The noises
\checkmark Single-mode interferometers
\checkmark Estimators
\checkmark An example of Fourier estimator
7. Estimating error bars and calibrating visibilities

Single-mode beam combiner

FLUOR (Fiber Linked Unit for Optical Recombination)

What do the signals look like ?

The two complementary interferometric channels:

$$
\begin{aligned}
I(t) & =\kappa_{A}^{ \pm} P_{A}(t)+\kappa_{B}^{ \pm} P_{B}(t) \pm 2 \sqrt{\kappa_{A}^{ \pm} \kappa_{B}^{ \pm}} \sqrt{P_{A}(t) P_{B}(t)} \int_{\sigma} C_{\text {loss }}(\sigma) \times V(\sigma) \times e^{-2 i \pi \sigma t-i \varphi_{p}(t)} d \sigma \\
& =\kappa_{A}^{ \pm} P_{A}(t)+\kappa_{B}^{ \pm} P_{B}(t) \pm 2 \sqrt{\kappa_{A}^{ \pm} \kappa_{B}^{ \pm}} \sqrt{P_{A}(t) P_{B}(t)} \int_{\sigma} \mu(\sigma) \times e^{-2 i \pi o t-i \varphi_{p}(t)} d \sigma
\end{aligned}
$$

With $P_{A}(t)$ and $P_{B}(t)$ the photometric signals measured by the photometric channels and $\kappa_{A}^{ \pm}$and $\kappa_{B}{ }^{ \pm}$the gains of the interferometric channels relative to the photometric channels

First step: measuring the gains

Gains are measured by alternatively blocking beams A and B and by fitting the interferometric signals with the photometric signals (the parameters are the ks)

Second step: estimating the photometric signals

Photometric signals are filtered by an optimum filter to minimize rms fluctuations but keep turbulent fluctuations

Third step: normalizing the interferogram

Normalization of the interferogram (correction of the effects of turbulence, except for piston):

$$
I_{\text {norm }}^{ \pm}(t)=\frac{I^{ \pm}(t)-\kappa_{A}^{ \pm} \bar{P}_{A}(t)-\kappa_{B}^{ \pm} \bar{P}_{B}(t)}{2 \sqrt{\kappa_{A}^{ \pm} \kappa_{B}^{ \pm} \bar{P}_{A}(t) \bar{P}_{B}(t)}}
$$

The same process is applied to the noise sequences that have been recorded Why?

Fourth step: computing coherence factors

Integrate the corrected interferogram PSD

Subtract the integrated processed noise PSD

One noise PSD has not been subracted though. Which one?
μ^{2} processed source photon noise bias:

$$
b_{p h}^{ \pm}=\int_{-\infty}^{+\infty}\left[g^{ \pm}(t)\right]^{2} I^{ \pm}(t) d t \quad \text { with } \quad g^{ \pm}(t)=\frac{1}{2 \sqrt{\kappa_{A}^{ \pm} \kappa_{B}^{ \pm} \bar{P}_{A}(t) \bar{P}_{B}(t)}}
$$

An illustrated example

Other co-axial V^{2} estimator

ABCD:

$V^{2}=4 \frac{(A-C)^{2}+(B-D)^{2}}{(A+B+C+D)^{2}}$

It is indeed a 1-fringe Fourier estimator

Quick example with a multi-axial beamcombiner

Pupil mask (Keck experiment)

Fruquequilapaks

Outline

\checkmark The different types of beamcombiners
\checkmark What's the issue ?
\checkmark The noises
\checkmark Single-mode interferometers
\checkmark Estimators
\checkmark An example of Fourier estimator
\checkmark Estimating error bars and calibrating visibilities

Importance of error bars assessment

Not such a huge issue in radio interferometry (this is a personal opinion) as the amount of $u v$ points is usually large (except probably for VLBI) and statistics can be directly estimated from calibrated visibilities.

At optical wavelengths, $u v$ point sampling is poorer (I hope this will change!).

Each visibility point therefore has a large relative weight in the data set.

Each point should therefore be well calibrated and the error be well estimated.

Final μ^{2} estimate and error bar

Squared coherence factors are computed for each scan in each interferometric channel

They define a statistics (histogram) from wich a standard deviation is derived
$\left.\begin{array}{ll} & \mu_{+}^{2} \pm \sigma\left(\mu_{+}^{2}\right) \\ \text { Eventually one gets: } & \mu_{-}^{2} \pm \sigma\left(\mu_{-}^{2}\right)\end{array}\right\} \Rightarrow \mu^{2} \pm \sigma\left(\mu^{2}\right)$

Principle of calibration

observing time

- 1 Observation set $=1$ set-up
- same night
- same detector parameters (frame rate, number of frames, ...)
- same filter...
- Principle : follow slow coherence loss fluctuations

Steps

1. Derive the expected visibility of the calibrator usually a uniform disk diameter is used to predict visibility at the spatial frequency S

$$
V_{\exp }(S)=\left|\frac{2 J_{1}\left(\pi \theta_{U D} S\right)}{\pi \theta_{U D} S}\right|
$$

2. Derive the instantaneous transfer function for each channel

$$
T_{i}^{2}\left(t_{1}\right)=\frac{\mu_{i}^{2}}{V_{\text {exp }}^{2}(S)}
$$

3. Estimate the transfer function at the time when the science target was observed

Different methods may be used

4. Calibrate the visibility of the science target

$$
V^{2}=\frac{\mu^{2}}{T^{2}(\tau)}
$$

Example of transfer function

Propagation of errors

Sources of errors (1σ error bars):

- errors on coherence factors (detector noise, photon noise, piston noise)
- errors on the diameter of calibrators

Propagation of errors:

- The final estimate of the squared visibility is the product and ratio of hopefully gaussian random variables.
\triangle - The ratio of two centered gaussian random variables is a Cauchy distribution of non-defined mean and variance! This is potentially dangerous when the SNR is low.

Propagation of errors

1 st method to propagate errors:

$$
V^{2}=\frac{\mu^{2}}{\mu_{c}^{2}} \times V_{c}^{2}
$$

- make an expansion of the V^{2} estimator if error bars are small

$$
d V^{2}=\frac{V^{2}}{\mu^{2}} \times d \mu^{2}+\frac{V^{2}}{V_{c}^{2}} \times d V_{c}^{2}-\frac{V^{2}}{\mu_{c}^{2}} \times d \mu_{c}^{2}
$$

- and sum the weighted variances of the errors

$$
\sigma^{2}\left(V^{2}\right) \approx\left(\frac{V^{2}}{\mu^{2}}\right)^{2} \times \sigma^{2}\left(\mu^{2}\right)+\left(\frac{V^{2}}{V_{c}^{2}}\right)^{2} \times \sigma^{2}\left(V_{c}^{2}\right)+\left(\frac{V^{2}}{\mu_{c}^{2}}\right)^{2} \times \sigma^{2}\left(\mu_{c}^{2}\right)
$$

4. only valid if errors are small

Propagation of errors

2nd method to propagate errors:

$$
V^{2}=\frac{\mu^{2}}{\mu_{c}^{2}} \times V_{c}^{2}
$$

- simulate the random variable and compute the variance of the simulated statistical distribution

$$
\left.\begin{array}{l}
\mu^{2}=0.400 \pm 0.010 \\
\mu_{c}^{2}=0.600 \pm 0.010 \\
V_{c}^{2}=0.980 \pm 0.001
\end{array}\right\} \Rightarrow V^{2}=0.654 \pm 0.020
$$

Analytical method $\Rightarrow V^{2}=0.653 \pm 0.020$

Propagation of errors

2nd method to propagate errors:

$$
V^{2}=\frac{\mu^{2}}{\mu_{c}^{2}} \times V_{c}^{2}
$$

- simulate the random variable and compute the variance of the simulated statistical distribution

$$
\left.\begin{array}{l}
\mu^{2}=0.400 \pm 0.010 \\
\mu_{c}^{2}=0.600 \pm 0.100 \\
V_{c}^{2}=0.980 \pm 0.001
\end{array}\right\} \Rightarrow V^{2}=0.670 \pm 0.126
$$

Analytical method $\Rightarrow V^{2}=0.653 \pm 0.110$

- this method is more robust as it also works with large error bars

Another issue, often overlooked

Correlations between visibilities recorded at different times, with a different baseline,..., also have to be taken into account for model fitting.

In this case the correlation is due to the use of common calibrators (the expected visibilities are then correlated)

It is therefore necessary that the data reduction program outputs numbers to compute the correlation a posteriori ...

Examples will be shown in L11

Rejecting bad data

Alpha Her Super giant star of type M5 Ib

Examples of selection criteria:

- reject data for which the instrument was not stable (varying transfer function)
- (probably) reject data for which statistical distributions of μ^{2} are not gaussian

Examples will be shown in L11

Have visibilities been well estimated?

BK Vir

Semi-regular variable of type M6.9 III

Alpha Her
Super giant star of type M5 Ib

Best accuracies with single-mode interferometers: a few 0.1\%

Alpha Her Super giant star of type M5 Ib

