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Temporal coding beam combiner:

The opd is temporally modulated :

The co-axial or ‘‘Michelson-type’’ beamcombiner

I(t) = I0 1±V cos 2πσνt( )( )

opd = vt

FLUOR fringes at IOTA 
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Spectrum B(σ)

σ = 1/λ = wavenumber (cm-1)

K band : 4000 - 5000 cm-1

Scan

Intensity vs. x opd in µm

Fourier transform

x and σ are conjugate variables through the Fourier Transform

B(σ)V(σ)
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Spatial coding beam combiner:

The opd is spatially modulated:

The multi-axial or ‘‘Fizeau-type’’ beamcombiner

I(θ) =
2J1 π D
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+D/λ-D/λ-B/λ +B/λ

1
Single-telescope

optical transfer function

1/2 V

Fourier       transform

B/λ and θ are conjugate variables through the Fourier Transform

The multi-axial or ‘‘Fizeau-type’’ beamcombiner
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Type of beam combiner considered here

I will use the formalism of the co-axial beam combiner in the following.

Both are actually fully equivalent to within some details in the equations.
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What’s the issue ?

A priori no issue.

We just need to measure a modulation.

Chris’s first lecture:

The visibility can easily be measured by sampling δ at 0 and λ/4:

P(s0,B,δ)  =   Itotal 1+Re  V exp[−ikδ][ ]{ }

Re V[ ]= P(s0,B,0)

Itotal
−1

Im V[ ]= P(s0,B,λ /4)
Itotal

−1

 

 
  

 
 
 
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What’s the issue ?

Unfortunately atmospheric piston makes a very bad joke:

P(s0,B,δ)  =   Itotal 1+Re  V exp[−ikδ − iϕ p ][ ]{ }

P(s0,B,0)

Itotal
−1= Re V exp −iϕ p[ ][ ]

P(s0,B,λ /4)
Itotal

−1= Im V exp −iϕ p[ ][ ]

 

 
  

 
 
 

Such a linear estimator of the visibility unfortunately does not work (yet ?) 

as the phase is corrupted by piston

Non-linear estimators are needed to estimate the visibility modulus and 

phase separately
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Classical visibility estimator

The Michelson estimator:

Works well on: But not so well on real data like:

Why ?

V = Imax − Imin
Imax + Imin

Estimators robust to noise are necessary
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From an ideal to a real noisy interferogram

1. Additive noise

Ideal interferogram:

P(s0,B,δ)  =   Itotal 1+Re  V exp[−ikδ][ ]{ }

Pn (s0,B,δ)  =  P(s0,B,δ) + ndet + nph
rms(nph ) = P(s0,B,δ)

 
 
 

  

With photon and detector noise:

Pn,b (s0,B,δ)  =  P(s0,B,δ) + ndet + nph + Back(t) + nBack(t )
rms(nBack(t )) = Back(t)

 
 
 

  

With instrument and sky background noise:
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From an ideal to a real noisy interferogram

1. Additive noise

Pn,b (s0,B,δ)  =  P(s0,B,δ) + ndet + nph + Back(t) + nBack( t )

Removable with the chopping

technique (residuals will remain)

See L9 by O. Chesneau

Pure random noise

Only averages down to zero
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From an ideal to a real noisy interferogram

2. Multiplicative noise

Ideal interferogram:

P(s0,B,δ)  =   Itotal 1+Re  V exp[−ikδ][ ]{ }

P(s0,B,δ)  =   PA + PB + 2 PAPB ×Re  V exp[−ikδ][ ]

Interferogram with unbalanced beams:

C =
2 PAPB

PA + PB
× V

PA = 2PB ⇒ C = 0.94 ×V

Fringe contrast (phase unchanged): 
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From an ideal to a real noisy interferogram

2. Multiplicative noise

Interferogram with turbulence:

is the coherent energy,         is the phase variance over the pupil

P(s0,B,δ)  =   PA + PB + 2 PAPB × e−σ ϕ
2

×Re  V exp[−ikδ − iϕ p (t)][ ]
e

−σ ϕ
2

σ ϕ
2

C =
2 PAPB

PA + PB
× e−σ ϕ

2

× V

This is a real catastrophy when the turbulence is not stable which 

unfortunately is the case in real life

Instantaneous fringe contrast:
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The visibility bias decreases with the visibility

Quirrenbach  et al. (1996)
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Different ways to handle the turbulence issue

1. Don’t do anything and assume that turbulence issues do not have an 

impact on the science case

2. Stop the telescope pupils down to less than r0

3. Use a perfect adaptive optics system and flatten the corrugated 

wavefront

4. Use a different technique to flatten the wavefront

5. Mix of 3 and 4
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The difficulty of interferometry without modal filteringThe difficulty of interferometry without modal filtering

Ridgway et al. (1992)

What is the model to choose ?

Mira in the K band
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Way out: spatial filtering
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Better way out: modal filtering

The spatial profile of the exit beam is the profile of the fiber fundamental 

mode (close to a gaussian).

The phase is flat in the waveguide. The spatial coherence is maximum. 

The phase fluctuations of the input beam are traded against intensity 

fluctuations of the output. But these fluctuations can be measured.

Single-mode waveguide
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Single-mode beam combiner

FLUOR (Fiber Linked Unit for Optical Recombination)

Precursor of the VINCI 

instrument on VLTI
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Interferometric equation, revisited

P(s0,B,δ)  =   PA + PB + 2 PAPB × e−σ ϕ
2 ( t ) ×Re  V exp[−ikδ − iϕ p (t)][ ]

V = C(t) /C(t)atm

Catm (t) =
2 PA (t)PB (t)

PA (t) + PB (t)

The maximum fringe contrast is the instantaneous atmospheric contrast:

Hence the visibility after photometric beams have been measured:

The coherence loss due to turbulence has been removed.

P(s0,B,δ)  =   PA(t) + PB(t) + 2 PA(t)PB(t) ×1×Re  V exp[−ikδ − iϕ p (t)][ ]
With beams A and B modally filtered:
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R
*

= 12.71±0.15 mas R
layer

= 24.95±0.10 mas Phase: 0.19 

T
*

= 3600±67 K T
layer

= 1961±17 K
(Perrin et al. 2004)

Same object, with modal filtering

τ2.03µm = 0.63±0.21
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It is time for a 5 minute break
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The phase of visibilities
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Measurement modulo 2π : ABCD method

The optical path difference is sampled at 4 points : 0, λ/4, λ/2 et 3λ/4

Phase estimator

ϕ 2π( )= arctan B −D
A −C
 
 
 

 
 
 

opd

A

B

C

D

0
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Multi-2π phase measurements.

Example 1: dispersed mode

Phase estimator

opd0

λ

Group delay technique

σ

I σ( )= cos 2πσx0( )

Fourier

transform x0

Channeled spectrum

ϕ = 2πσ 0x0
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Multi-2π phase measurements.

Example 2: co-axial and non-dispersed fringes in wide band

Phase estimator

opd0 x0 σ

Fourier

transform

p
h
a
se

ϕ σ( )= 2πσx0

ϕ = 2πσ 0x0
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Visibility estimator

Some vocabulary first

The measured fringe contrast needs to be calibrated to be useful otherwise 

it is dramatically biased by coherence losses (polarization, dispersion, 

atmosphere, …)

Fringe contrast before calibration:

µ Coherence Factor or Uncalibrated Visibility

Fringe contrast after calibration (the observable linked to the object):

V Visibility or Calibrated Visibility
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Visibility estimator

V or V2 ?

By V, interferometrists indeed mean 

The data reduction process provides a noisy estimate of

The noise applies to the complex quantity V and therefore the estimated 

fringe contrast for each individual scan is corrupted by noise so that:

When averaging individual visibility estimates to improve the SNR:

V

V

˜ V =V + n and ˜ V = V + n

˜ V = V + n ≠ V
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Visibility estimator

V or V2 ?

The        estimator is therefore biased by additive noise.

The bias is all the larger as the visibility is low or as the source is faint 

The solution is to average          instead of 

V

V

˜ V 
2

= V + n 2 = V
2 + 2 ×Re Vn{ }+ n

2

= V
2 + 2 ×Re Vn{ } + n

2

= V 2 + 2 ×Re V n{ }+ n
2

V
2

= V
2 + n

2
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Visibility estimator

V or V2 ?

The           estimator is biased but can easily be unbiased

The real          estimator is:

˜ V 2 = V + n 2 − n
2

V
2

V
2

An unbiased estimator of the squared visibility is therefore obtained by 

subtracting the variance of the additive noise

This is why interferometrists talk about V2 instead of V
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Visibility estimator

How is µ2 measured ?

Very traditionally, a Fourier analysis of the fringe pattern is performed

σ

Fourier

Transform
x2

µ

µ/2

σ

Power

Spectrum

µ2/4
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Visibility estimator

How is µ2 measured ?

With a wide spectral band:

Power

Spectrum

B2(σ)µ2(σ)

The integral of the PSD is proportional to µ2(σ )
band

B(σ) is the spectrum of the source
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Single-mode beam combiner

FLUOR (Fiber Linked Unit for Optical Recombination)
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What do the signals look like ?

The two complementary interferometric channels:

With PA(t) and PB(t) the photometric signals measured by the photometric 

channels and κA± and κB± the gains of the interferometric channels 
relative to the photometric channels

I(t) = κA

±PA (t)+ κB

±PB (t)± 2 κA

±κB

± PA (t)PB (t) Closs(σ )×V (σ) × e
−2iπσvt− iϕ p (t )dσ

σ
∫

= κA

±PA (t)+ κB

±PB (t) ± 2 κA

±κB

± PA (t)PB (t) µ(σ) × e−2iπσvt− iϕ p (t )dσ
σ
∫

Fourier

Transform
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I+

I−

 

 
 

 

 
 
LF

=
κA

+ κB

+

κA

− κB

−

 

 
 

 

 
 
PA

PB

 

 
 

 

 
 

First step: measuring the gains

Gains are measured by alternatively blocking beams A and B

and by fitting the interferometric signals with the photometric signals

(the parameters are the κs)
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Second step: estimating the photometric signals

Photometric signals are filtered by an optimum filter to minimize rms 

fluctuations but keep turbulent fluctuations

Fourier

Transform

P A (t)

P B (t)
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Third step: normalizing the interferogram

Normalization of the interferogram (correction of the effects of turbulence, except 

for piston):

Inorm
± (t) = I±(t) −κA

±P A (t) −κB

±P B (t)

2 κA

±κB

±P A (t)P B (t)

The same process is applied to the noise sequences that have been recorded

Why ?
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Fourth step: computing coherence factors

Integrate the corrected interferogram PSD

Subtract the integrated processed noise PSD

One noise PSD has not been subracted though. Which one ?

µ2 processed source photon noise bias:

bph
± = g±(t)[ ]2 I±(t)dt

−∞

+∞

∫ with g±(t) = 1

2 κA

±κB

±P A (t)P B (t)
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An illustrated example

PSD of the normalized interferogram PSD of the normalized noise

PSD interferogram - PSD noise PSD interferogram - PSD noise

- PSD photon noise

Final µ2 estimator: integral of the fringe peak
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Other co-axial V2 estimator

A
B

C

D V
2 = 4

(A −C)2 + B− D( )2

(A+ B +C +D)2

opd

ABCD:

It is indeed a 1-fringe Fourier estimator
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Quick example with a multi-axial beamcombiner

Image planePupil mask (Keck experiment) Frequency peaks
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Importance of error bars assessment

Not such a huge issue in radio interferometry (this is a personal opinion) 

as the amount of uv points is usually large (except probably for VLBI) 

and statistics can be directly estimated from calibrated visibilities.

At optical wavelengths, uv point sampling is poorer (I hope this will 

change !).

Each visibility point therefore has a large relative weight in the data set.

Each point should therefore be well calibrated and the error be well 

estimated.
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Final µ2 estimate and error bar

Squared coherence factors are computed for each scan in each interferometric 

channel

They define a statistics (histogram) from wich a standard deviation is derived

Eventually one gets: 

µ+
2 ± σ µ+

2( )
µ−
2 ± σ µ−

2( )
 
 
 

  
⇒ µ2 ± σ µ2( )
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Principle of calibration

• 1 Observation set = 1 set-up

– same night

– same detector parameters (frame rate, number of frames, ...)

– same filter...

• Principle : follow slow coherence loss fluctuations

Calibrator 1 Source 1 Calibrator 2

observing time

Link 1

Calibrator 3 Source 2 Calibrator 4

Link 2

Observation Blocks (OB)

Observation set



Guy Perrin -- Data reduction 12 June 2006VLTI EuroSummer School                                               53

Steps

1. Derive the expected visibility of the calibrator

usually a uniform disk diameter is used to predict visibility at the 

spatial frequency S

2. Derive the instantaneous transfer function for each channel

3.  Estimate the transfer function at the time when the science target was 

observed

4. Calibrate the visibility of the science target 

Vexp (S) =
2J1 πθUDS( )

πθUDS

Ti
2
(t1) =

µi

2

Vexp
2
(S)

T 2(τ) = t2 − τ
t2 − t1

 

 
 

 

 
 T 2(t1) +

τ − t1
t2 − t1

 

 
 

 

 
 T 2(t2)

t1 t2τ

V 2 = µ2

T 2(τ)

Different methods may be used
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channel +

channel -

sources

T+
2 (t)

T-
2 (t)

A
rb
it
ra
ry
 s
ca
le

Time

Example of transfer function
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Propagation of errors

Sources of errors (1σ error bars):
- errors on coherence factors (detector noise, photon noise, piston 

noise)

- errors on the diameter of calibrators

Propagation of errors:

- The final estimate of the squared visibility is the product and ratio of 

hopefully gaussian random variables.

- The ratio of two centered gaussian random variables is a Cauchy 

distribution of non-defined mean and variance ! This is potentially 

dangerous when the SNR is low.
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Propagation of errors

1st method to propagate errors:

- make an expansion of the V2 estimator if error bars are small

- and sum the weighted variances of the errors

only valid if errors are small

V 2 = µ2

µc

2
×Vc

2

dV 2 = V
2

µ2
× dµ2 + V

2

Vc

2
× dVc

2 − V
2

µc

2
× dµc

2

σ 2(V 2) ≈ V 2

µ2
 

 
 

 

 
 
2

×σ 2(µ2) + V 2

Vc

2

 

 
 

 

 
 
2

×σ 2(Vc

2) + V 2

µc

2

 

 
 

 

 
 
2

×σ 2(µc

2)
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Propagation of errors

2nd method to propagate errors:

- simulate the random variable and compute the variance of the

simulated statistical distribution

V 2 = µ2

µc

2
×Vc

2

µ2 = 0.400± 0.010

µc

2 = 0.600± 0.010

Vc

2 = 0.980 ± 0.001

 

 
 

 
 

⇒ V 2 = 0.654 ± 0.020

⇒ V 2 = 0.653± 0.020Analytical method

40000

0

5000

10000

15000

20000

25000

30000

35000

V^2

0,850,55 0,60 0,70 0,80

Hist.
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Propagation of errors

2nd method to propagate errors:

- simulate the random variable and compute the variance of the

simulated statistical distribution

V 2 = µ2

µc

2
×Vc

2

µ2 = 0.400± 0.010

µc

2 = 0.600± 0.100

Vc

2 = 0.980± 0.001

 

 
 

 
 

⇒ V 2 = 0.670 ± 0.126

175000

0

25000

50000

75000

100000

125000

150000

V^2

1,50,0 0,5 1,0

Hist.

⇒ V 2 = 0.653± 0.110Analytical method

- this method is more robust as it also works with large error bars
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Correlations between visibilities recorded at different times, with a 

different baseline,..., also have to be taken into account for model 

fitting.

In this case the correlation is due to the use of common calibrators (the 

expected visibilities are then correlated)

It is therefore necessary that the data reduction program outputs numbers 

to compute the correlation a posteriori…

Examples will be shown in L11

Another issue, often overlooked
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Examples of selection criteria:

- reject data for which the instrument was not stable (varying transfer 

function)

- (probably) reject data for which statistical distributions of µ2 are not

gaussian

Examples will be shown in L11
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Have visibilities been well estimated?
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Best accuracies with single-mode 

interferometers: a few 0.1%
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