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The problem at hand

what you have:

— data, for instance OI-FITS:

o OI VIS complex visibility (amplitude and phase)

o OI VIS2 squared visibility amplitude

e OI T3 triple product a.k.a. bispectrum (amplitude and phase)
— priors (i.e. possible models of the observed object)

what you want:
— 1dentify the observed object
— estimate object parameters and uncertainties

what you need:
— tools for model fitting
— know what you are doing (no black magic!)
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Other questions

what can you do from optical interferometric data?
— direct interpretation (for gurus!)
— data processing to have human readable view of the data

— 1mage (possibly poly-chromatic) however

e image may require more measurements (about as many as resels in the
synthesized field of view, in fact this is not true but this is another story)

— estimate parameters of a model

what is a model?

— a mathematical/numerical function which can predict the data values given
the parameters
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Model fitting: schematic view

parameters

model +

data — model

residuals =

uncertainty

fitting tool <—I
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What are the best parameters?

7 the ones which maximize the probability of having observed the data:

Xpest — argmaXxPr(d|m<x))
where:
X are the parameters
m(x) 1s the model
d are the data
similarly: X, = argmin_f(x)

where f(x) oc —logPr(d|m(x))
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Gaussian Statistics

for Gaussian errors (noise + model errors) and the correct model:

exp(—% rT-C_l-r)

V(2 )Y det(C)

Pr(d|m(x)) =

where the residuals are: r = %(d — m(x)

m(x) 1s the model, d are the data, and C is the covariance matrix of the residuals:

C = (rr) — (r<r)
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Gaussian log-likelihood

exp(—% rT-C_l-r)

V(2 )Y det(C)

general Gaussian statistics: Pr(r) =

taking: f(x) = —2 logPr(d|m(x))
= (d — m(x))-C"(d — m(x)) + N og det (C)

and discarding irrelevant additive constants, yields:

(rer') = (r)(r)’

'
Il
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Gaussian log-likelihood for independent data

independent Gaussian data:

N gata

Pr(r) = [[ Pe(r) = I]

2
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residuals:

normalized errors:

ri(x) = i(d] — mj(x))
e (x) = 1)
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Statistics of complex data

complex visibility: z = x+1y = p el ®
X = pcoso

y = psmg

complex residuals: » 60z = 6x+idy

chi-square (2 possible expressions!):
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Statistics of real optical interferometry data

low SNR high SNR

(triple product of FKV0509)

C. Hummel et al.: http://www.mrao.cam.ac.uk/~jsyl001/exchange/complex/complex.html
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http://www.mrao.cam.ac.uk/~jsy1001/exchange/complex/complex.html

Statistics of complex optical interferometry data

for complex optical interferometric data:

T [ 5 L [m
X (50) 0, “oo .(50)
2
op] \C,, 04 0
Sp> 8¢
2 2
O'p O'd)

Cov(p,¢) = 0

true criterion

global convex
approximation

local convex
approximation

-

Re

(source: S. Meimon, 2006)
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Local convex approximation

Cartesian coordinates:

X = pcosg e O0x = cos¢p dp—psingd 6P
y = p sing Oy =~ sing Sp+pcosep 6
Cov(p,¢) = 0
cri =~ COSzcl) crf)+p2 sin2c1> O'i
2 2 2 2 2 2
O'i = sin2c1> Ui+p2 COSzcl) Ui = O, Uy—cx,y = p 0,0,
" . 2 2 2
C,, = sing¢ cosqb(ap—p U¢)
T 2
¥2 — 1 dXx o —C, .\ [6x
— 2 2 2 ' 2 2
p o, 0,\0y -C,, © oy
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Statistics of real interferometric data

2 2 Im 4
N il 2 op o
true criterion: X ~ —

o, true criterion
global convex
approximation

convex approximation:
local convex
approximation
T
2 1 5 x o’
X = ——F— s c Cy R:;
P O-P O-¢ Y T “x,y

(source: S. Meimon, 2006)

circular approximation (Goodman approximation):
O = PO,

= o, =0,=0 and Cov(x,y) =0
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Statistics summary

log-likelihood of complex visibility:
— heterogeneous data (VIS, VIS2, T3) yields sum of chi-square terms

— complex chi-square in polar coordinates is not convex w.r.t. complex
visibility (hence approximations below)

— Goodman approximation (circular, may be OK for low SNR's) 0, = p 0,

criterion:
— local approximation (obtained from a local expansion)
— global approximation (same moments as true criterion)
— true criterion

e amplitude and phase are independent and Gaussian Cov(p,¢) = 0

* however homogeneous distribution ( ocp ) 1s not constant in polar coordinates
hence maximum likelihood yield a solution which depends on the change of
variables (Tarantola, 1987)
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Is the model reliable?

— chi-square statistics yield level of confidence (i.e. what is the probability to have
found the correct model with such a bad chi-squared value);

— however this statistics is very sharp (~ Gaussian for large Ng...):

<X2> = Nfree i Ndata_N
Var(X’) = 2 N

param

free

— noise level and modelization errors must not be underestimated;

— in practice, chi-square statistics cannot be used to accept or rule out a fitted
model;

— however can be used to compare two models:
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Statistics of the parameters: linear model

lincar model:  m(x) = A-x

T

= A-C_-A
—1
T -1 . .
>C, = (A C. A) covariance matrix of parameters

: - @ .
correlation matrix: | = _—L

- T; 0,
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Statistics of the parameters: non-linear model

non-linear model:  m(x) # A-x
om
m(x) =5 m('xbest) iis E(xbest>'(x B xbest)
> ¢, = (4"chA)
: om . om .
Wlth A w §<xbest)9 1.C. Aj,k = J(xbest)

0x,

however depends on data error bars,
workaround if true error bars known up to a scaling parameter:

~ Nfree . — o -
C. ~ T (4"-C;"- A
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Non-Gaussian Statistics

reasons to not use Gaussian statistics:

— the residuals are not Gaussian (e.g., Poisson noise, however central-limit
theorem);

— there are outliers (bad data);
— optical interferometry data (complex valued, not a linear space);

non-Gaussian statistics:
— accounts for non-Gaussian noise and model error
— vyields non-quadratic penalty (w.r.t. residuals)
— can be used to rule out outliers (e.g., {,-{{ norms)
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Unique Solution?

complex visibility model for a binary star: 20

m(u,v)=o+(1-a) e 2ime=rvy)

10
X* depends on 3 parameters: 0, x, and y

o« (x,y)=arg minaxz((x,x,y) o

Tx,y) =X 0 (x, ), X, y)  —

-10

X

non convex criterion:

. . =20 T I BN R D e T
— many local minima ~20 -10 0 10 20

(x*" map, source: C. Béchet et al., 2005)

— global optimization required
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Optimization Issues

— non convex criterion (unless Gaussian statistics and linear model)
— many local minima

— global optimization required
» systematic exploration of the parameter space
— griding (very expensive)
— random initial solution, then local optimization
e Monte-Carlo exploration
— simulated annealing (e.g. ASA, Ingber, 1989)
— genetic algorithms

— reduce number of parameters

* some parameters can be uniquely estimated given the other (e.g.  in the
binary star example if the complex visibilities are available)

— local optimization can however improve a given set of parameters

VLTI Euro Summer School Eric Thiébaut - L12: Model Fitting 14 June 2006 - 20




Local optimization: Newton method

— can be used to refine a solution
— based on Newton method:

f(x+6x)= f(x)+(5xT-g(xH—l 6xT-H(x)-6x+0(||5x||2)

2
_0f(x)
where g(x)=V f(x) gj(x)— Ox,
H(x)=VV f(x) X
Hj’k(x)zﬁaxfg)c)

local quadratic approximation:

f(x+6x)—f(x) =~ g(6x) = 6xT'g(x)+%6xT-H(x)'5x

optimal step:

5x,., = argmin, g(6x) = —H(x) -g(x)

quad
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Local optimization: avoiding too large steps

Newton step can be too large (outside region where quadratic approximation is valid)

solve the constrained problem:

Sxp, = argmin, ¢g(6x) s.t. ||6x|| < A

metric: |6 x|| Jox"-D-5x

size of the
trust region

Lagrangian: L(6x,A) = q(éx)+%2\||6x||2

. -1
constrained step; 60Xy = 0x, = argming L(6x,A) = —(H(x)—H\ D) -g(x)

VLTI Euro Summer School Eric Thiébaut - L12: Model Fitting 14 June 2006 - 22




Trust Region Algorithm

The algorithm is as follows (Moré & Sorensen, 1983):

0. choose an initial trust region radius A

1. find Lagrange multiplier A such that:

either A = 0 and HéxAH < A
or A > 0 and H5xAH =

f(x+0x,)—-f(x)
q(6x,)

2. compute goodness of quadratic approximation: n =

* reject the step dx if N too small

* enlarge trust region radius A if N ~ 1, reduce A 1f n too small

3. check for convergence of repeat with step 1
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Levenberg-Marquardt algorithm (1)

local minimization of a sum of squares criterion

Ndata
= D ejlx
- J
J=1

e.g. Gaussian independent noise:

X
th p 20—

Sy ﬁ H V21O,

the e's are normalized residuals errors:
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Levenberg-Marquardt algorithm (2)

criterion:

fuwzgam

gradient and Hessian:

0 f(x) e de (x)
gk(x) axk = axk e](x>
o f(x Eidleiie) 0cibv B 5% ¢ (x)
Hyle) = L2 -y 2T DG T 5 S 2T g ()
x, 0x, =1 0x, 0x, P (0/55,40)0%,
i ol % Oe;(x) Oe;(x)
=1 Ox, 0x,
: S de,(x)
hence, only 1* order partial derivatives needed: ~ J,, = P
k
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Levenberg-Marquardt algorithm summary

N ata

f(x) = 2 elx)

criterion (sum of squares):
—

o

~

iteratively minimized by a trust region method

quadratic approximation:
R () ~ | 6xT-g(x)—l—%6xT-H(x)-5
e To °
with (x) = 2J(x) -e(x) e J, (%) = ag](x)
: X,

4
H(x) = 2J(x) -J(x)

(can be obtained by finite differences)
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Closure (i.e. lunch time!)

model fitting:

— gives you the best model parameters and their error bars providing
e your model is pertinent
o the statistics of the errors is not too far from Gaussian
» you have found the global minimum

o the statistics may be truly multi-modal (i.e. the other local minima may deserve
some attention)

— is real data processing (not a magic black box) you have to understand
what 1s undergone

issues not addressed in this talk:
— global optimization (non-convex criterion)
— estimation of partial derivatives by finite differences
— accounting for correlations in the data (however see general Gaussian)
— residual definitions for non-Gaussian data (phase, amplitude)

VLTI Euro Summer School Eric Thiébaut - L12: Model Fitting 14 June 2006 - 27




Some References

mathematics & statistics:

— A. Tarantola, Inverse Problem Theory - Methods for Data Fitting and Model Parameter Estimation,
Elsevier, 1987 (re-edited by STAM).

— D. Pelat, Bruits et signaux, cours de I'école doctorale Astrophysique et Techniques Spatiales (Univ. Paris 6
& 7), 1998.

optimization:
— J.J.Mor¢ & D.C. Sorensen, Computing A Trust Region Step, SIAM J. Sci. Stat. Comp. 4, 553-572, 1983.

— W.H,, Press, S.A. Teukolsky, W.T. Vetterling & B.P. Flannery, Numerical Recipes in C, Cambridge
University Press, 1992.

— L. Ingber, Very fast simulated re-annealing, Math. Comput. Modelling 12, 967-973, 1989.

optical interferometry:

— T.A. Pauls, J.S. Young, W.D. Cotton & J.D. Monnier, A Data Exchange Standard for Optical (Visible/IR)
Interferometry, PASP 117, 1255-1262, 2005.

— S. Meimon, L.M. Mugnier & G. le Besnerais, Convex approximation to the likelihood criterion for
aperture synthesis imaging, J. Opt. Soc. Am. A 22, 2348-2356, 2005.

— M. Tallon, I. Tallon-Bosc, E. Thiébaut, C. Béchet, M. Chadid, A. Chelli, J.-M. Clausse, G. Duvert, D.
Mourard, G. Perrin, R. Petrov, Ph. Stee, G. Zins, JMMC Model Fitting Software for optical interferometry,
SF2A Conference Series, p. 171-174, 2004.

— C. Béchet, M. Tallon, I. Tallon-Bosc, E. Thiébaut, Model Fitting Software developed by JMMC for optical
interferometry data analysis, SF2A Conference Series, p. 271-274, 2005.

VLTI Euro Summer School Eric Thiébaut - L12: Model Fitting 14 June 2006 - 28




