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The problem at hand

what you have:
– data, for instance OI-FITS:

• OI_VIS complex visibility (amplitude and phase)
• OI_VIS2 squared visibility amplitude
• OI_T3 triple product a.k.a. bispectrum (amplitude and phase)

– priors (i.e. possible models of the observed object)

what you want:
– identify the observed object
– estimate object parameters and uncertainties

what you need:
– tools for model fitting
– know what you are doing (no black magic!)
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Other questions

what can you do from optical interferometric data?
– direct interpretation (for gurus!)
– data processing to have human readable view of the data
– image (possibly poly-chromatic) however

• image may require more measurements (about as many as resels in the 
synthesized field of view, in fact this is not true but this is another story)

– estimate parameters of a model

what is a model?
– a mathematical/numerical function which can predict the data values given 

the parameters
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Model fitting: schematic view

parameters

data

model

residuals = data − model
uncertainty

fitting tool
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What are the best parameters?

the ones which maximize the probability of having observed the data:

where:
 x are the parameters
 m(x) is the model

d are the data

similarly:

xbest = arg maxx Pr d∣mx 

              xbest = arg min x f  x 

where  f x  ∝ −log Pr d∣mx 
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Gaussian Statistics

for Gaussian errors (noise + model errors) and the correct model:

where the residuals are:
  
 m(x) is the model,  d are the data, and C is the covariance matrix of the residuals: 

C = 〈r⋅rT〉 − 〈r 〉⋅〈 r 〉T

Pr d∣mx  =
exp−1

2
rT⋅C−1⋅r

2N data det C 

r = ±d − m x 
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 Gaussian log-likelihood

Pr r  =
exp−1

2
rT⋅C−1⋅r

2N data det C 

C = 〈 r⋅rT〉 − 〈 r 〉⋅〈 r 〉T

f x  = 2x  = d − mx T⋅C−1⋅d − mx 
                           = r  x T⋅C−1⋅r x 

r x  = ±d − m x 

f x  = −2 log Pr d∣m x 
         = d − m x T⋅C−1⋅d − m x   N data log 2  log det C 

taking:

and discarding irrelevant additive constants, yields:

general Gaussian statistics:
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 Gaussian log-likelihood for independent data

Pr r  = ∏
j

N data

Pr r j = ∏
j

N data
exp−r j

2

2  j
2 

2 j

independent Gaussian data:

e j x  =
r j  x 
 j

2x  = ∑
j

N data r j
2x 
 j

2 = ∑
j

N data

e j
2 x 

r j x  = ±d j − m j x residuals:

normalized errors:



14 June 2006 - 9  VLTI Euro Summer School                             Eric Thiébaut - L12: Model Fitting

Statistics of complex data

r =  z =  xi  y

z = xi y =  ei 

x =  cos
y =  sin

2 =  x
 y

T

⋅  x
2

C x , y

C x , y

 y
2 

−1

⋅ x
 y = 1

 x
2  y

2−C x , y
2  x

 y
T

⋅  y
2

−C x , y

−C x , y

 x
2 ⋅ x

 y

2 = 
T

⋅ 2C  ,

C  ,


2 

−1

⋅

complex visibility:

complex residuals:

chi-square (2 possible expressions!):

≠

amplitude and phase
residuals
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Statistics of real optical interferometry data

C. Hummel et al.: http://www.mrao.cam.ac.uk/~jsy1001/exchange/complex/complex.html

(triple product of FKV0509)

low SNR high SNR

http://www.mrao.cam.ac.uk/~jsy1001/exchange/complex/complex.html
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Statistics of complex optical interferometry data

Cov  , ≃ 0for complex optical interferometric data:

2 = 
T

⋅2C  ,

C  ,


2 

−1

⋅
    ≃

2


2 

2


2

(source: S. Meimon, 2006)
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2 = 1
2 

2 
2  x
 y

T

⋅  y
2

−C x , y

−C x , y

 x
2 ⋅ x

 y

 x
2 ≃ cos2 

22 sin2 
2

 y
2 ≃ sin2 

22 cos2 
2

C x , y ≃ sin cos 2−2 
2 

Local convex approximation

x =  cos
y =  sin

 x
2  y

2−C x , y
2 ≃ 2 

2 
2

 x ≃ cos − sin 
 y ≃ sin  cos 

⇒

Cov  , ≃ 0

⇒

Cartesian coordinates:
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Statistics of real interferometric data

(source: S. Meimon, 2006)

2     ≃
2


2 

2


2

      =  
⇒  x =  y = 0     and    Cov  x , y = 0

circular approximation (Goodman approximation):

true criterion:

convex approximation:

2 ≃ 1
2 

2 
2  x
 y

T

⋅  y
2

−C x , y

−C x , y

 x
2 ⋅ x

 y
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Statistics summary

log-likelihood of complex visibility:
– heterogeneous data (VIS, VIS2, T3) yields sum of chi-square terms
– complex chi-square in polar coordinates is not convex w.r.t. complex 

visibility (hence approximations below)
– Goodman approximation (circular, may be OK for low SNR's)

criterion:
– local approximation (obtained from a local expansion)
– global approximation (same moments as true criterion)
– true criterion

• amplitude and phase are independent and Gaussian
• however homogeneous distribution (         ) is not constant in polar coordinates 

hence maximum likelihood yield a solution which depends on the change of 
variables (Tarantola, 1987)

Cov  , ≃ 0
∝

 =  
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Is the model reliable?
– chi-square statistics yield level of confidence (i.e. what is the probability to have 

found the correct model with such a bad chi-squared value);

– however this statistics is very sharp (~ Gaussian for large Nfree):

– noise level and modelization errors must not be underestimated;

– in practice, chi-square statistics cannot be used to accept or rule out a fitted 
model;

– however can be used to compare two models: 2m1
N 1

  vs.  
2m2

N 2

〈2〉 = N free = N data−N param

Var 2 = 2 N free
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Statistics of the parameters: linear model

⇒C r = 〈r−r ⋅r−r T〉 = A⋅〈x−x ⋅x−x T〉⋅AT

        = A⋅C x⋅AT

⇒ C x = AT⋅C r
−1⋅A−1

m x  = A⋅x

r = ±d − mx 

linear model:

covariance matrix of parameters

correlation matrix:

⇒C r = 〈r−r ⋅r−r T〉 = A⋅〈x−x ⋅x−x T〉⋅AT

        = A⋅C x⋅AT

⇒ C x = AT⋅C r
−1⋅A−1

 j , k =
C j , k

 j  k
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Statistics of the parameters: non-linear model

⇒ C x ≃ AT⋅C r
−1⋅A−1

non-linear model: m x  ≠ A⋅x

m x  ≃ m x best 
∂m
∂ x

 x best⋅x − x best

however depends on data error bars,
workaround if  true error bars known up to a scaling parameter:

C x ≃
N free

2 x best
AT⋅C r

−1⋅A−1

with     A = ∂m
∂ x

x best,    i.e.     A j , k =
∂m j

∂ x k
 x best
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Non-Gaussian Statistics

reasons to not use Gaussian statistics:
– the residuals are not Gaussian (e.g., Poisson noise, however central-limit 

theorem);
– there are outliers (bad data);
– optical interferometry data (complex valued, not a linear space);

non-Gaussian statistics:
– accounts for non-Gaussian noise and model error
– yields non-quadratic penalty (w.r.t. residuals)
– can be used to rule out outliers (e.g., ℓ2-ℓ1 norms)
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Unique Solution?

 non convex criterion:
– many local minima
– global optimization required (χ2+ map, source: C. Béchet et al., 2005)

m u , v =1− e−2 i u xv y

complex visibility model for a binary star:

χ2 depends on 3 parameters: α, x, and y

 x , y = arg min
2 , x , y

2 x , y=2  x , y , x , y 
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Optimization Issues

– non convex criterion (unless Gaussian statistics and linear model)
– many local minima
– global optimization required

• systematic exploration of the parameter space
– griding (very expensive)
– random initial solution, then local optimization

• Monte-Carlo exploration
– simulated annealing (e.g. ASA, Ingber, 1989)
– genetic algorithms

– reduce number of parameters
• some parameters can be uniquely estimated given the other (e.g. α in the 

binary star example if the complex visibilities are available)
– local optimization can however improve a given set of parameters
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Local optimization: Newton method
– can be used to refine a solution
– based on Newton method:

where

local quadratic approximation:

optimal step:

f x x = f x  xT⋅g x 1
2
 xT⋅H x ⋅ xo ∥ x∥2

g x ≡∇ f x 

H  x ≡∇ ∇ f x 

   g j  x =
∂ f  x 
∂ x j

H j , k x =
∂ f x 
∂ x j ∂ x k

 x quad  = arg min x q  x   = −H  x −1⋅g x 

f x x − f x  ≃ q  x  ≡  xT⋅g  x 1
2
 x T⋅H x ⋅ x



14 June 2006 - 22  VLTI Euro Summer School                             Eric Thiébaut - L12: Model Fitting

Local optimization: avoiding too large steps

Newton step can be too large (outside region where quadratic approximation is valid)

solve the constrained problem:

metric:

Lagrangian:

constrained step:

L x , = q  x 1
2
 ∥ x∥2

 xTR =  x = arg min x L x , = −H x  D −1
⋅g x 

 xTR = arg min x q  x      s.t.    ∥ x∥  

∥ x∥ =  xT⋅D⋅ x size of the
trust region
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Trust Region Algorithm
The algorithm is as follows (Moré  & Sorensen, 1983):

0. choose an initial trust region radius ∆

1. find Lagrange multiplier λ such that:

2. compute goodness of quadratic approximation:

• reject the step δx if η too small
• enlarge trust region radius ∆ if η ~ 1, reduce ∆ if η too small  

3. check for convergence of repeat with step 1

 =
f  x x− f x 

q  x

either     = 0     and    ∥ x∥  
or            0     and    ∥ x∥ ≃ 
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Levenberg-Marquardt algorithm (1)
local minimization of a sum of squares criterion

e.g. Gaussian independent noise:

the e's are normalized residuals errors:

f x  = ∑
j=1

N data

e j
2x 

e j x  =
r j  x 
 j

= ±
d j−m j  x 

 j

Pr r =∏
j

N data

Pr r j =∏
j

N data
exp−r j

2

2  j
2 

2 j
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Levenberg-Marquardt algorithm (2)
criterion:

gradient and Hessian:

hence, only 1st order partial derivatives needed:

f x  = ∑
j=1

N data

e j
2x 

g k  x  =
∂ f x 
∂ xk

= 2∑
j=1

N data ∂e j x 
∂ x k

e j x 

H k , l x  =
∂2 f x 
∂ xk ∂ x l

= 2∑
j=1

N data ∂ e j  x 
∂ xk

∂ e j  x 
∂ xl

2∑
j=1

N data ∂2 e j x 
∂ xk ∂ xl

e j x 

≃ 2∑
j=1

N data ∂e j x 
∂ x k

∂ e j x 
∂ xl

J j , k ≡
∂ e j x 
∂ x k
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Levenberg-Marquardt algorithm summary

quadratic approximation:

f x x − f x  ≃ q  x  ≡  x T⋅g  x 1
2
 xT⋅H x ⋅ x

J j , k x  ≡
∂ e j  x 
∂ x k

f x  = ∑
j=1

N data

e j
2x 

 g x  = 2 J x T⋅e x 
H  x  ≃ 2 J x T⋅J x 

criterion (sum of squares):

(can be obtained by finite differences)

iteratively minimized by a trust region method

with and
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Closure (i.e. lunch time!)
model fitting:

– gives you the best model parameters and their error bars providing
• your model is pertinent
• the statistics of the errors is not too far from Gaussian
• you have found the global minimum
• the statistics may be truly multi-modal (i.e. the other local minima may deserve 

some attention)
– is real data processing (not a magic black box) you have to understand 

what is undergone

issues not addressed in this talk:
– global optimization (non-convex criterion)
– estimation of partial derivatives by finite differences
– accounting for correlations in the data (however see general Gaussian)
– residual definitions for non-Gaussian data (phase, amplitude)
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