AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Conclusion

AMBER data reduction

E. Tatulli

Osservatorio Astrofisico di Arcetri - Italia

Goutelas – June 13th, 2006

Interferometer using single mode waveguides

→ Spatial filtering of the turbulent wavefront

With a multiaxial "all-in-one" recombination scheme → Fringes spatially coded on the detector → All fringes coded together in the same interference pattern

For 2 or 3 telescopes, in the near infrared

ightarrow Resp. 1 or 3 baselines ightarrow In J (1.25µm), H (1.65µm) and K (2.2µm) bands ightarrow Achieves an angular resolution of θ ~ 2mas

Allowing spectral dispertion

 $\hookrightarrow \mathcal{R} = 35, 1500, 10000$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality

In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

The signal processing point of view

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Conclusion

▲山下 ▲田下 ▲글下 ▲三下 二進 - ○○○

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

cylindrical optics: beam compression

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

cold optics: spectrograph, detector

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Conclusion

Calibration and Alignement Unit (CAU)

Interferometer using single mode waveguides

With a multiaxial "all-in-one" recombination scheme

for 2 or 3 telescopes, with spectral dispertion

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Interferometer using single mode waveguides What is their effect on the interferometric signal? How can we use this in the data reduction process?

With a multiaxial "all-in-one" recombination scheme

for 2 or 3 telescopes, with spectral dispertion

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Interferometer using single mode waveguides What is their effect on the interferometric signal? How can we use this in the data reduction process?

With a multiaxial "all-in-one" recombination scheme What is the proper AMBER interferometric equation? What is specific about it?

for 2 or 3 telescopes, with spectral dispertion

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Interferometer using single mode waveguides What is their effect on the interferometric signal? How can we use this in the data reduction process?

With a multiaxial "all-in-one" recombination scheme What is the proper AMBER interferometric equation? What is specific about it?

for 2 or 3 telescopes, with spectral dispertion What are the observables of AMBER? How to estimate them?

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

AMBER data reduction

E. Tatulli

AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Estimation Observables Limitations

AMBER data

reduction

At the fiber's output

- ← The shape ot the signal is deterministic
- \hookrightarrow Phase fluctuations \rightarrow Intensity fluctuations

Coupling coefficient depends on: turbulence and source's extent

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

What do we measure: the modal visibility

- $\hookrightarrow V_{ij} \propto \mathsf{TF}[O_{\star}(\alpha)L^{ij}(\alpha)](f_{ij})$
- \hookrightarrow Field of view: $\Theta \sim \frac{\lambda}{D}$
- → The modal visibility is biased
- \hookrightarrow For compact sources: $V_{ij} \sim V_{obj}$, $\frac{\Delta V}{V} < 10^{-3}$

Observables Limitations

Conclusion

AMBER data

reduction

Deriving the AMBER interferometric equation

Step I: One beam lit

Interferometric channel: $i_k = F^i a_k^i$ Photometric channel: $p_k^i = F^i b_k^i$

Conventions

k in index: pixel coordinate i, j in exponent: telescope(s)number(s)

Definitions $F^{i} = Nt^{i}$ photometric flux a_{k}^{i}, b_{k}^{i} : intensity profile

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation

Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Deriving the AMBER interferometric equation

Step II: two beams lit

 $\begin{array}{l} \textit{Interferometric channel:} \\ i_k = F^i a^i_k + F^j a^j_k + \\ \sqrt{a^i_k a^j_k} C^{ij}_B \mathsf{Re} \left[F^{ij}_c \mathsf{e}^{i(2\pi\alpha_k f^{ij} + \phi^{ij}_s + \Phi^{ij}_B)} \right] \end{array}$

Definitions $F_c^{ij} = 2N\sqrt{t^i t^j} V^{ij} e^{i(\Phi^{ij} + \phi_p^{ij})}$ coherent flux C_B^{ij}, Φ_B^{ij} : polarization ϕ_s^{ij} : instrumental phase α_k : sampling f^{ij} : frequency coding

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation

Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Deriving the AMBER interferometric equation

Step III: all pairs of beams

 $\begin{array}{l} \textit{Interferometric channel:} \\ i_{k} = \sum_{i}^{N_{tel}} F^{i}a_{k}^{i} + \\ \sum_{i < j}^{N_{tel}} \sqrt{a_{k}^{i}a_{k}^{j}}C_{B}^{ij} \mathrm{Re} \left[F_{c}^{ij}\mathrm{e}^{i(2\pi\alpha_{k}f^{ij}+\phi_{s}^{ij}+\Phi_{B}^{ij})}\right] \end{array}$

Definitions $F_c^{ij} = 2N\sqrt{t^i t^j} V^{ij} e^{i(\Phi^{ij} + \phi_p^{ij})}$ coherent flux C_B^{ij}, Φ_B^{ij} : polarization ϕ_s^{ij} : instrumental phase α_k : sampling f^{ij} : frequency coding

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation

Principle

Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

コト イクト イラト イラト・ヨー のくひ

AMBER data reduction

E. Tatulli

the AMBER interferometric equation $DC \ component$ $i_{k} - \sum_{i}^{N_{tel}} F^{i}a_{k}^{i} = \sum_{i < j}^{N_{tel}} \sqrt{a_{k}^{i}a_{k}^{j}C_{B}^{ij}} \operatorname{Re}\left[F_{c}^{ij}e^{i(2\pi\alpha_{k}f^{ij}+\phi_{s}^{ij}+\Phi_{B}^{ij})}\right]$ $p_{k}^{i} = F^{i}b_{k}^{i} \qquad \left(P^{i} = F^{i}\sum_{k}^{N_{pix}}b_{k}^{i}\right)$

A linear relationship between the measurements and the complex visibilities can be derived

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

the AMBER interferometric equation $DC \ component$ $i_{k} - \sum_{i}^{N_{tel}} F^{i}a_{k}^{i} = \sum_{i < j}^{N_{tel}} \sqrt{a_{k}^{i}a_{k}^{j}}C_{B}^{ij}\operatorname{Re}\left[F_{c}^{ij}e^{i(2\pi\alpha_{k}f^{ij}+\phi_{s}^{ij}+\Phi_{B}^{ij})}\right]$ $p_{k}^{i} = F^{i}b_{k}^{i} \qquad \left(P^{i} = F^{i}\sum_{k}^{N_{pix}}b_{k}^{i}\right)$

A linear relationship between the measurements and the complex visibilities can be derived

• Need to estimate the DC component The fraction of flux that goes from photometry to DC

$$P^i v^i_k = F^i a^i_k$$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

the AMBER interferometric equation $DC \ component$ $i_{k} - \sum_{i}^{N_{tel}} F^{i}a_{k}^{i} = \sum_{i < j}^{N_{tel}} \sqrt{a_{k}^{i}a_{k}^{j}}C_{B}^{ij}\operatorname{Re}\left[F_{c}^{ij}e^{i(2\pi\alpha_{k}f^{ij}+\phi_{s}^{ij}+\Phi_{B}^{ij})}\right]$ $p_{k}^{i} = F^{i}b_{k}^{i} \qquad \left(P^{i} = F^{i}\sum_{k}^{N_{pix}}b_{k}^{i}\right)$

A linear relationship between the measurements and the complex visibilities can be derived

• Need to know characteristics of the intrument The shape of the interferogram: the carrying waves

$$c_k^{ij} = C_B^{ij} rac{\sqrt{a_k^i a_k^j}}{\sqrt{\sum_k a_k^i a_k^j}} \cos(2\pi lpha_k f^{ij} + \phi_s^{ij} + \Phi_B^{ij})$$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

the AMBER interferometric equation $DC \ component$ $i_{k} - \sum_{i}^{N_{tel}} F^{i}a_{k}^{i} = \sum_{i < j}^{N_{tel}} \sqrt{a_{k}^{i}a_{k}^{j}}C_{B}^{ij} \operatorname{Re}\left[F_{c}^{ij}e^{i(2\pi\alpha_{k}f^{ij}+\phi_{s}^{ij}+\Phi_{B}^{ij})}\right]$ $p_{k}^{i} = F^{i}b_{k}^{i} \qquad \left(P^{i} = F^{i}\sum_{k}^{N_{pix}}b_{k}^{i}\right)$

A linear relationship between the measurements and the complex visibilities can be derived

• Need to know characteristics of the intrument The shape of the interferogram: the carrying waves $d_k^{ij} = C_B^{ij} \frac{\sqrt{a_k^i a_k^j}}{\sqrt{\sum_k a_k^i a_k^j}} \sin(2\pi\alpha_k f^{ij} + \phi_s^{ij} + \Phi_B^{ij})$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

the AMBER interferometric equation $DC \ component$ $i_{k} - \sum_{i}^{N_{tel}} F^{i}a_{k}^{i} = \sum_{i < j}^{N_{tel}} \sqrt{a_{k}^{i}a_{k}^{j}C_{B}^{ij}} \operatorname{Re}\left[F_{c}^{ij}e^{i(2\pi\alpha_{k}f^{ij}+\phi_{s}^{ij}+\Phi_{B}^{ij})}\right]$ $p_{k}^{i} = F^{i}b_{k}^{i} \qquad \left(P^{i} = F^{i}\sum_{k}^{N_{pix}}b_{k}^{i}\right)$

A linear relationship between the measurements and the complex visibilities can be derived

• Requires a calibration of the instrument: $v_k^i, c_k^{ij}, d_k^{ij}$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

AMBER data reduction steps

- Modelling the interferogram in the detector plane
- In 5 steps:
 - 1. Cosmetic (flatfield, sky...)
 - 2. Calibration of the instrument:
 - \hookrightarrow fraction of flux v_k^i
 - \hookrightarrow carrying waves c_k^{ij}, d_k^{ij}
 - 3. Estimation of the photometric F^i and coherent fluxes F_c^{ij}
 - 4. Estimation of the observables
 - 5. Biases correction

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Calibration of the instrument the v_{I}^{i} functions

oixels

0.008

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Calibration of the instrument the v_k^i functions

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Calibration of the instrument the v_{i}^{i} functions

pixels

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Photometric fluxes $F^i a_k^i = P^i v_k^i$

 $mk = i_k - \sum P^i v_k^i$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Photometric fluxes $F^i a_k^i = P^i v_k^i$

 $mk = i_k - \sum P^i v_k^i$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$$m_k = \sum_{i < j}^{N_{tel}} \sqrt{a_k^i a_k^j} C_B^{ij} \mathsf{Re} \left[F_c^{ij} \mathsf{e}^{i(2\pi lpha_k f^{ij} + \phi_s^{ij} + \Phi_B^{ij})}
ight]$$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$$m_k = \sum_{i < j}^{N_{tel}} \sqrt{\sum_k a_k^i a_k^j} \left(c_k^{ij} \operatorname{Re} \left[F_c^{ij} \right] + d_k^{ij} \operatorname{Im} \left[F_c^{ij} \right] \right)$$

 $\begin{aligned} & \text{Coherent flux} \\ & m_k = \sum_{i < j}^{N_{tel}} c_k^{ij} R^{ij} + d_k^{ij} F_c^{ij} \\ & R^{ij} = \sqrt{\sum_k a_k^i a_k^j} \text{Re}\left[F_c^{ij}\right] \\ & I^{ij} = \sqrt{\sum_k a_k^i a_k^j} \text{Im}\left[F_c^{ij}\right] \\ & C^{ij} = R^{ij} + iI^{ij} = \sqrt{\sum_k a_k^i a_k^j} F_c^{ij} \end{aligned}$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$$m_{k} = \sum_{i < j}^{N_{tel}} \sqrt{\sum_{k} a_{k}^{i} a_{k}^{j}} \left(c_{k}^{ij} \operatorname{Re} \left[F_{c}^{ij} \right] + d_{k}^{ij} \operatorname{Im} \left[F_{c}^{ij} \right] \right)$$

$$\begin{split} & \text{Coherent flux - Inverting the V2PM} \\ & m_k = \underbrace{\left[c_k^{(i,j)}, d_k^{(i,j)}\right]}_{V2PM} \begin{bmatrix} R_{ij} \\ I_{ij} \end{bmatrix} \\ & R^{ij} = \sqrt{\sum_k a_k^i a_k^j} \text{Re}\left[F_c^{ij}\right] \\ & I^{ij} = \sqrt{\sum_k a_k^i a_k^j} \text{Im}\left[F_c^{ij}\right] \\ & C^{ij} = R^{ij} + iI^{ij} = \sqrt{\sum_k a_k^i a_k^j} F_c^{ij} \end{split}$$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$$m_{k} = \sum_{i < j}^{N_{tel}} \sqrt{\sum_{k} a_{k}^{i} a_{k}^{j}} \left(c_{k}^{ij} \operatorname{Re} \left[F_{c}^{ij} \right] + d_{k}^{ij} \operatorname{Im} \left[F_{c}^{ij} \right] \right)$$

$$\begin{split} & \text{Coherent flux - Inverting the V2PM} \\ & m_k = \underbrace{\left[c_k^{(i,j)}, d_k^{(i,j)}\right]}_{V2PM} \begin{bmatrix} R_{ij} \\ I_{ij} \end{bmatrix} \\ & R^{ij} = \sqrt{\sum_k a_k^i a_k^j} \text{Re}\left[F_c^{ij}\right] \\ & I^{ij} = \sqrt{\sum_k a_k^i a_k^j} \text{Im}\left[F_c^{ij}\right] \\ & C^{ij} = R^{ij} + iI^{ij} = \sqrt{\sum_k a_k^i a_k^j} F_c^{ij} \end{split}$$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

The AMBER observables

$$F_c^{ij} = 2N\sqrt{t^i t^j} V^{ij} \mathsf{e}^{i(\Phi^{ij} + \phi_p^{ij})}$$

- the modulus of the visibility characteristic size of the source
- the phase → presence of atmospheric piston
- the closure phase @ 3 telescopes geometry/asymmetries
- 2. the differential phase @ spectral resolution displacement of the photcenter vs. the wavelength

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

The phase

$$C^{ij} = R^{ij} + iI^{ij} = \sqrt{\sum_k a_k^i a_k^j} 2N\sqrt{t^i t^j} V^{ij} \mathsf{e}^{i(\Phi^{ij} + \phi_p^{ij})}$$

The closure phase $\phi_p^{ij} = \phi_p^i - \phi_p^j$ $\widetilde{B}^{123} = \langle C^{12}C^{23}C^{13*} \rangle$ $\widetilde{\phi_B}^{123} = \operatorname{atan} \left[\frac{\operatorname{Im}(\widetilde{B}^{123})}{\operatorname{Re}(\widetilde{B}^{123})} \right]$ $\widetilde{\phi_B}^{123} = \Phi^{12} + \Phi^{23} - \Phi^{13}$

The differential phase $\widetilde{W}_{12}^{ij} = \left\langle C_{\lambda_1}^{ij} C_{\lambda_2}^{ij*} \right\rangle$ $\widetilde{\Delta\phi}_{12}^{ij} = \operatorname{atan} \left[\frac{\operatorname{Im}\left(\widetilde{W}_{12}^{ij}\right)}{\operatorname{Re}\left(\widetilde{W}_{12}^{ij}\right)} \right]$ $\phi_{\lambda}^{ij} = 2\pi\delta^{ij}\sigma + Cst$ $\Delta\phi_{12}^{ij} = \phi_1^{ij} + 2\pi\left(\sigma_2 - \sigma_1\right)\delta^{ij}$ In the continuum: $\delta^{ij} = \delta_p^{ij}$ In lines: $\delta^{ij} = \delta_o^{ij} + \delta_p^{ij}$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

The phase

$$C^{ij}=R^{ij}+iI^{ij}=\sqrt{\sum_k a_k^i a_k^j}2N\sqrt{t^it^j}V^{ij}\mathsf{e}^{i(\Phi^{ij}+\phi_p^{ij})}$$

The closure phase
$$\begin{split} \phi_p^{ij} &= \phi_p^i - \phi_p^j \\ \widetilde{B}^{123} &= \left\langle C^{12} C^{23} C^{13*} \right\rangle \\ \widetilde{\phi_B}^{123} &= \operatorname{atan} \left[\frac{\operatorname{Im}(\widetilde{B}^{123})}{\operatorname{Re}(\widetilde{B}^{123})} \right] \\ \widetilde{\phi_B}^{123} &= \Phi^{12} + \Phi^{23} - \Phi^{13} \end{split}$$

The differential phase $\Delta \phi_{12}^{ij} = \phi_1^{ij} + 2\pi (\sigma_2 - \sigma_1) \delta^{ij}$ In the continuum: $\delta^{ij} = \delta_p^{ij}$ In lines: $\delta^{ij} = \delta_o^{ij} + \delta_p^{ij}$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

By definition $|V^{ij}|^2 = \frac{|F_c^{ij}|^2}{4F^iF^j}$

ullet Visibility V_c^{ij} the internal source (CAl

Quadratic bias: photon and detector noise

ullet Loss of spectral coherence: finite coherence length $\mathcal L$

Atmospheric jitter

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

By definition $|V^{ij}|^2 = \frac{R^{ij^2} + I^{ij^2}}{4P^i P^j \sum_k v_k^i v_k^j}$

• Visibility V_c^{ij} the internal source (CAU)

Quadratic bias: photon and detector noise

Loss of spectral coherence: finite coherence length L
 Atmospheric jitter

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

By definition $\frac{|V^{ij}|^2}{V_c^{ij^2}} = \frac{R^{ij^2} + I^{ij^2}}{4P^i P^j \sum_k v_k^i v_k^j}$

• Visibility V_c^{ij} the internal source (CAU)

Quadratic bias: photon and detector noise

Loss of spectral coherence: finite coherence length A
 Atmospheric jitter

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$\frac{\widetilde{|V^{ij}|^2}}{V_c^{ij^2}} = \frac{\left\langle R^{ij^2} + I^{ij^2} \right\rangle}{4 \left\langle P^i P^j \right\rangle \sum_k v_k^i v_k^j}$

- Visibility V_c^{ij} the internal source (CAU)
- Quadratic bias: photon and detector noise
- Loss of spectral coherence: finite coherence length L
 Atmospheric jitter

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$$\frac{|Vij|^2}{V_c^{ij}} = \frac{\left\langle R^{ij^2} + I^{ij^2} \right\rangle - \text{Bias}\left\{ R^{ij^2} + I^{ij^2} \right\}}{4 \left\langle P^i P^j \right\rangle \sum_k v_k^i v_k^j}$$

• Visibility V_c^{ij} the internal source (CAU)

• Quadratic bias: photon and detector noise Bias $\{R^2 + I^2\} = \sigma_R^2 + \sigma_I^2$

$$R = \sum_{k=1}^{N_{pix}} \zeta_k m_k, \quad I = \sum_{k=1}^{N_{pix}} \xi_k^b m_k$$

$$\sigma_R^2 = \sum_k (\zeta_k)^2 \sigma^2(m_k); \quad \sigma_I^2 = \sum_k (\xi_k)^2 \sigma^2(m_k)$$

$$\sigma_R^2(m_k) = \overline{i_k} + \sigma_k^2 + \sum_{k=1}^{N_{tel}} [\overline{P} + N + \sigma_k^2] (u^i)^2$$

$$\sigma^2(m_k) = \overline{i_k} + \sigma^2 + \sum_{i=1}^{N_{tel}} \left[\overline{P_i} + N_{pix} \sigma^2 \right] (v_k^i)^2$$

- ullet Loss of spectral coherence: finite coherence length \mathcal{L}_c
- Atmospheric jitter

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$$\frac{\widetilde{|V^{ij}|^2}}{V_c^{ij^2}} = \frac{\left\langle R^{ij^2} + I^{ij^2} \right\rangle - \operatorname{Bias}\left\{ R^{ij^2} + I^{ij^2} \right\}}{4 \left\langle P^i P^j \right\rangle \sum_k v_k^i v_k^j} < \rho_p^2 >$$

• Visibility V_c^{ij} the internal source (CAU)

- Quadratic bias: photon and detector noise
- Loss of spectral coherence: finite coherence length \mathcal{L}_c $\rho_p = \left| \widehat{\mathcal{F}} \left(\pi \frac{\delta_p + \delta_o}{\mathcal{L}_c} \right) \right|$

Atmospheric jitte

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$$\frac{\widetilde{|V^{ij}|^2}}{V_c^{ij^2}} = \frac{\left\langle R^{ij^2} + I^{ij^2} \right\rangle - \operatorname{Bias}\left\{ R^{ij^2} + I^{ij^2} \right\}}{4 \left\langle P^i P^j \right\rangle \sum_k v_k^i v_k^j} < \rho_p^2 >$$

• Visibility V_c^{ij} the internal source (CAU)

- Quadratic bias: photon and detector noise
- Loss of spectral coherence: finite coherence length \mathcal{L}_c $\rho_p = \left| \operatorname{sinc} \left(\pi \frac{\delta_p + \delta_o}{\mathcal{L}_c} \right) \right|$

Atmospheric jitte

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$$\frac{\widetilde{|V^{ij}|^2}}{V_c^{ij^2}} = \frac{\left\langle R^{ij^2} + I^{ij^2} \right\rangle - \text{Bias}\left\{ R^{ij^2} + I^{ij^2} \right\}}{4 \left\langle P^i P^j \right\rangle \sum_k v_k^i v_k^j} < \rho_p^2 > < \rho_{jit}^2 >$$

• Visibility V_c^{ij} the internal source (CAU)

- Quadratic bias: photon and detector noise
- Loss of spectral coherence: finite coherence length \mathcal{L}_c
- Atmospheric jitter

Fringe motion during the integration time: Must be calibrated on reference source

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Semi-empirical formula $\frac{\sigma^2(|V^{ij}|^2)}{|V^{ij}|^2} = \frac{1}{M} \left[\frac{\sigma^2(|C^{ij}|^2)}{|C_{ij}|^2} + \frac{\sigma^2(P^iP^j)}{\overline{P^iP^j}^2} \right]$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

Semi-empirical formula

 $\frac{\sigma^2(|\widetilde{V^{ij}|^2})}{|\widetilde{V^{ij}|^2}} = \frac{1}{M} \left[\frac{\left\langle |C^{ij}|^4 \right\rangle_M - \left\langle |C^{ij}|^2 \right\rangle_M^2}{\left\langle |C^{ij}|^2 \right\rangle_M^2} + \frac{\left\langle P^{i^2} P^{j^2} \right\rangle_M - \left\langle P^{i} P^{j} \right\rangle_M^2}{\left\langle P^{i} P^{j} \right\rangle_M^2} \right]$

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$\frac{Semi-empirical formula}{\frac{\sigma^{2}(|V^{ij}|^{2})}{|V^{ij}|^{2}}} = \frac{1}{M} \left[\frac{\langle |C^{ij}|^{4} \rangle_{M} - \langle |C^{ij}|^{2} \rangle_{M}^{2}}{\langle |C^{ij}|^{2} \rangle_{M}^{2}} + \frac{\langle P^{i^{2}}P^{j^{2}} \rangle_{M} - \langle P^{i}P^{j} \rangle_{M}^{2}}{\langle P^{i}P^{j} \rangle_{M}^{2}} \right]$

Empirical computation *Bootstrapping!*

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

$\frac{Semi-empirical formula}{\frac{\sigma^{2}(|\widetilde{V^{ij}}|^{2})}{|\widetilde{V^{ij}}|^{2}} = \frac{1}{M} \left[\frac{\langle |C^{ij}|^{4} \rangle_{M} - \langle |C^{ij}|^{2} \rangle_{M}^{2}}{\langle |C^{ij}|^{2} \rangle_{M}^{2}} + \frac{\langle P^{i^{2}}P^{j^{2}} \rangle_{M} - \langle P^{i}P^{j} \rangle_{M}^{2}}{\langle P^{i}P^{j} \rangle_{M}^{2}} \right]$

Empirical computation

Bootstrapping!

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

VLTI status: vibrations along the ,
 → no fringe tracker, low limiting magnitude
 → Potentially non stationnary: absolute calibration?

1.5

- Fringe selection + jitter dispersion
- Strong effort from ESO to identify/suppress sources of vibration

Fringe SNR

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

VLTI status: vibrations along the ,
 → no fringe tracker, low limiting magnitude
 → Potentially non stationnary: absolute calibration?

1.5

- Fringe selection + jitter dispersion
- Strong effort from ESO to identify/suppress sources of vibration

Fringe SNR

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

VLTI status: vibrations along the ,
 → no fringe tracker, low limiting magnitude
 → Potentially non stationnary: absolute calibration?

- Careful check of evolution of the transfer function (more than 1 calibrator)
- Fringe selection + jitter dispersion
- Strong effort from ESO to identify/suppress sources of vibration

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

VLTI status: vibrations along the ,
 → no fringe tracker, low limiting magnitude
 → Potentially non stationnary: absolute calibration?

- Careful check of evolution of the transfer function (more than 1 calibrator)
- Fringe selection + jitter dispersion
- Strong effort from ESO to identify/suppress sources of vibration

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

- VLTI status: vibrations along the ,
 - \rightarrow no fringe tracker, low limiting magnitude
 - → Potentially non stationnary: absolute calibration?

- Careful check of evolution of the transfer function (more than 1 calibrator)
- Fringe selection + jitter dispersion
- Strong effort from ESO to identify/suppress sources of vibration

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

The AMBER data reduction process:

- fit of the interferogram in the detector plane
 → allows fourier fringe peaks overlaping
- uses a priori of the instrument: v_k, c_k^2, d_k^2 1. requires a calibration step \Leftrightarrow the "P2VM" computat
 - 2. the calibration matrix needs to be accurate and stable
- $ullet \ [M] = [MV2P][V] o$ Inversion of the calibration matrix
- the observables are:
 - 1. the modulus of the visibility: spatial extent
 - the closure phase @ 3 telescopes: geometry/asymmetries
 - 3. the differential phase @ spectral resolution: kinematics

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

The AMBER data reduction process:

- fit of the interferogram in the detector plane
 → allows fourier fringe peaks overlaping
- uses a priori of the instrument: $v_k^i, c_k^{ij}, d_k^{ij}$
 - 1. requires a calibration step \Leftrightarrow the "P2VM" computation
 - 2. the calibration matrix needs to be accurate and stable
- $ullet \ [M] = [MV2P][V] o$ Inversion of the calibration matrix
- the observables are:
 - 1. the modulus of the visibility: spatial extent
 - 2. the closure phase @ 3 telescopes: *geometry/asymmetries*
 - the differential phase @ spectral resolution: kinematics

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

The AMBER data reduction process:

- fit of the interferogram in the detector plane
 → allows fourier fringe peaks overlaping
- uses a priori of the instrument: $v_k^i, c_k^{ij}, d_k^{ij}$
 - 1. requires a calibration step \Leftrightarrow the "P2VM" computation
 - 2. the calibration matrix needs to be accurate and stable
- $[M] = [MV2P][V] \rightarrow$ Inversion of the calibration matrix
- the observables are:
 - 1. the modulus of the visibility: spatial extent
 - 2. the closure phase @ 3 telescopes: *geometry/asymmetries*
 - the differential phase @ spectral resolution: kinematics

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations

The AMBER data reduction process:

- fit of the interferogram in the detector plane
 → allows fourier fringe peaks overlaping
- uses a priori of the instrument: $v_k^i, c_k^{ij}, d_k^{ij}$
 - 1. requires a calibration step \Leftrightarrow the "P2VM" computation
 - 2. the calibration matrix needs to be accurate and stable
- $[M] = [MV2P][V] \rightarrow$ Inversion of the calibration matrix
- the observables are:
 - 1. the modulus of the visibility: spatial extent
 - 2. the closure phase @ 3 telescopes: geometry/asymmetries
 - 3. the differential phase @ spectral resolution: kinematics

AMBER data reduction

E. Tatulli

What is AMBER?

In a few words In principle In reality In questions

Spatial filtering

Interferometric Equation Principle Analysis

Data reduction

Overview Calibration Fluxes Estimation Observables Limitations