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Disclaimer

This is not a good lecture !



Spatial frequency
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Fourier transform.
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Angular coordinates are natural when the source is at a large distance from the 

diaphragm (or pupil). This is in particular true in astronomy for which objects are 

located at quasi infinite distances. 

Spatial frequencies are not so obvious but this notion is not so difficult. A spatial 

frequency is the reciprocal of a characteristic scale of an object :

Spatial frequency coordinates have reciprocal dimensions with respect to 

coordinates in direct space (m � m-1). 

Direct coordinates and Fourier space coordinates are conjugated by the Fourier 

transform.
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Diffraction, imaging, Optical Transfer Function



Fraunhofer Diffraction

Hypotheses :

• 1. Small diffraction angles : 

• 2. Diaphragm and screen are small w.r.t. z : 1/s ≈ 1/z

• 3. z much larger than the Rayleigh distance: zR =
x0

2 + y0
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(rad-1 or arcsec-1)
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Traditionally, variables are changed into :

Pupil plane

Image plane



The diffracted field is proportional to the Fourier Transform of the field in 

the pupil plane :
ψ (α,β ) ∝TF Ψ(u, v){ }

I(α,β) = Ψ(α,β)
2

t
≡ Ψ(α,β)

2

The image is the convolution of the source spatial intensity distribution by the point

spread function

α
β

Pupil function

P
Image plane

O (α 0 ,β 0 )

Im(α,β) = O(α0,β0).I(α −α0,β −β0) dα0dβ0∫∫ =O∗ I (α,β)

Point source response:

Extended object:



Image spectrum :

The optical system is a  low-pass filter with a cut-off frequency D/λλλλ

Image frequency contents

S(u,v) =FT Im(α,β){ }=FT O(α,β){ }.OTF(u,v)

Object

x

FT
Object spatial spectrum

=

Image spatial spectrum
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The same image formation theory applies to the interferometer

The interferometer as a band-pass filter

+D/λ-D/λ

+D/λ-D/λ-B/λ +B/λ

1

1/2

Pupil Optical transfer function

+D/λ-D/λ-B/λ +B/λ

1 Source spatial spectrum

(Visibility)

Source starts to be resolved

What happens for

an extended source ?
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Fourier plane sampling

© C.A. Haniff



(u,v) tracks

(u,v) tracks are ellipses whose center is on the v axis. (u⌫ East, v⌫ North)

General equation for (u,v) tracks :

Bx, By and Bz are the coordinates of the baseline vector projected onto the axes 

pointing towards East, North and the meridian, respectively

Particular cases :

- δ = 0°   : (u,v) tracks are straight lines parallel to the u axis

- δ = 90° : (u,v) tracks are circles centered on the origin
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Examples of (u,v) coverages at IOTA 

(Arizona)

Three 45 cm relocatable siderostats

Lattitude = 31.4°

Hour angle range : -4h , +4h
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Examples of (u,v) coverages at IOTA 

(Arizona)

Three 45 cm relocatable siderostats

Lattitude = 31.4°

Hour angle range : -4h , +4h δ = 90°
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Examples of (u,v) coverages at IOTA 

(Arizona)

Three 45 cm relocatable siderostats

Lattitude = 31.4°

Hour angle range : -4h , +4h δ = +45°
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Coherence



Coherence of light waves

Let            be a light wave.

As for random variables, a correlation can be defined between fields at 

different times or at different locations.

In the first case, this is called temporal coherence:

In the second case, it is spatial coherence:
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Temporal coherence

Measuring the temporal coherence of the electric field means measuring:

How shall we do?

  
E(

r 
P ,t).E

*
(
r 
P , t +τ )

∆t>>1/ ν

The Michelson interferometer

At optical wavelengths?



The Michelson interferometer

(polychromatic case)

Fields at different wavelengths are not coherent.

The interferogram measured with the Michelson interferometer is therefore the 

sum of mochromatic interferograms in the band:

(σ = 1/λ is the wavenumber)

The complex degree of coherence in the polychromatic case is therefore: 

(proof: Wiener-Khintchine theorem):

The interferogram of the Michelson set-up therefore allows to measure the 

spectrum of the source � principle of the Fourier transform spectrometer
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∆λ
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Coherence length

lc =
1

∆σ
=

λ2

∆λ

Number of fringes =
lc

λ
=

λ
∆λ

Opd in units of λ



Spatial coherence

Measuring the spatial coherence of the field means measuring:

How shall we do?
  
E(

r 
P ,t).E

*
(
r 
P + ∆

r 
P ,t )

∆t>>1/ ν

The Young slit experiment

At optical wavelengths?



The spatial interferometer

(extended source)

The source is extended and uncoherent (i.e. the fields emitted by 

individual points are not correlated).

The intensity of the field in the focal plane is:

Which yields for the complex coherence factor:
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• This result is known as the Zernike-Van Cittert theorem : the complex 

coherence factor is equal to the Fourier transform of the spatial intensity 

distribution of the source. 

• The conjugated coordinates are the angular direction S and the spatial 

frequency B/λ.

• Measuring a value of the complex coherence factor yields a value of the 

spatial spectrum of the source. 

• The interferometer is therefore a band-pass filter (as opposed to a single 

pupil which is a low-pass filter) giving access to the very high spatial 

frequencies of the source.

• Measuring the complex coherence factor at several spatial frequencies allows

to restore the spatial intensity distribution of the source. 

-> aperture synthesis technique



V

The  complex coherence factor is usually called the complex visibility:

• the modulus is the fringe contrast of the interference pattern

• the phase is derived from the position of the central fringe with respect 

to the zero optical path difference (zero opd or zopd):

φ

ϕ = 2πδ
λ



Image plane
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Angular resolution :
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Image plane
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Angular resolution :
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Image plane

f

B

Angular resolution :
λ
B
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Image plane

f

B

Angular resolution :
λ
B

f × λ
D

Interferometry

f × λ
B

λ B

V
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∫ when ϕ = π
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The optical interferometer



Astronomical interferometry in practice

S

variable delay (B.S)

Delay line

B

B
.S



Model fitting and visibility models



Two examples of visibility functions

Uniform disk: with θ the angular diameter.

The visibility function is equal to: 

Visibility function (modulus) :
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Binary star:

The visibility function equals: 

Visibility function (modulus) for ΒΒΒΒ//αααα :
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Quiz
Modulus Phase

Object 1

Object 2

Object 3



Atmospheric turbulence



Atmospheric turbulence

atmosphere

Temporal and spatial 

fluctuations of T and 

therefore n(T) alter light 

paths

Spatial scale of correlation 

of phase: r0 (Fried 

diameter), a few cm at 

visible wavelengths (~λλλλ6/5)

distorted wavefront

incident wavefront



We lose twice:

1. The object is apparently more 

extended hence less spatially coherent.

2. The object looks different in the two 

telescopes � poorer correlation.

The issue of atmospheric turbulence
Spatial coherence loss

The issue of atmospheric turbulence
Spatial coherence loss

AO corrected image



Phase: closure, differential



Atmosphere Corrupts the Phase

The absolute phase is ill-defined
© J.D. Monnier



Differential Phase

Wavelength

F
lu

x
onlyemission continuumline

~~~
VVV ′+′=′

Prime indicates corrupted 

by atmospheric piston

Measured Interpolated

If you make assumption 

about V_continuum (e.g., 

unresolved), then 

V_emission can be 

determined fully

© J.D. Monnier



Differential Phases with VLTI-AMBER:

What might this be?

Visibilities Differential Phase

© J.D. Monnier



The “Closure Phase” Is Not Corrupted

© J.D. Monnier



How Much Phase Information? 

Closure Phases are not all independent from each other.

Number of Closure Phases Number of Fourier Phases

Number of Independent Closure Phases

© J.D. Monnier



Summary of a few Important Points

The closure phases are independent of all telescope-specific phase errors.

The closure phases are all 0 or 180 degrees for sources with point 
symmetry.  

Object must be resolved (~> half fringe spacing B/λ) to have non-zero CP

-- CP ∝ (baseline)^3

-- Phase ∝ (baseline)

Based on J.D. Monnier



Calibration



Calibrator Sources

Formally, anything can be a calibration source.

However, assessing our measurement accuracies we must account for 

uncertainties in our ability to predict the properties of the calibration 

source:

Traditionally (realistically) this has meant that we choose calibrators 

whose properties are as simple as possible – single stars!

Vtrg

2 = (Vmodel−cal
2 /Vmeas−cal

2 )Vmeas− trg
2

δVtrg

2 ∝ (∂Vmodel−cal
2 /∂model) σmodel

δVtrg

2 ∝ (∂Vmodel−cal
2 /∂Θ) σΘ

Choose star diameter as small as 

possible as then the derivative is 0

Based on A. Boden



Estimating Angular Sizes of Stars (3)

• Because stellar size is proportional to (sqrt 

of) brightness, bright & “point-like” does not 

formally exist

• Source resolution is a question of instrument 

resolution and sensitivity

• For given apparent brightness, “hotter” stars 

appear smaller

Homework: Recompute for

Apparent K Magnitude

2

)(2.0

4

5800
1017.8

4

−
+−









••=

=Θ

K

T
mas

T

F

effBCV

eff

Bol

σ

• So estimating apparent size is easy:

all you need is bolometric flux

and effective temperature!

• In this sense effective temperature

is just a proxy for surface brightness

© A. Boden


