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Basic approach and rationale

« Measure visibility function on range of different baselines, each
sensitive to structure on an angular scale | /B.

* Interferometry is often the only way to investigate these scales.
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This is the uv-plane:

u 4

Note: This is the uv-plane for an object at zenith.
In general, the projected baselines have to be used.




Fourier plane sampling (cont.)

In practice rather than re-locate the tel escopes to measure different spatial
frequencies, we take advantage of the Earth’ s rotation. In this case the
tips of the uv vectors sweep out ellipses.

The properties of these will be governed by:

— The hour angles of the observation.
— The declination of the source.
— The stations being used.

| ssues to be thinking about will include:

— Isthere any shadowing of the telescopes by each other?

— The allowed range of the delay lines - are they long enough?

— The zenith distance - will the seeing be too poor at low elevations?
— Can the interferometer fringe-track ok?
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Examples of Fourier plane coverage

Dec -15

Dec -65

Whatever these ook like, don’t forget the “rules of thumb”!
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Some practical caveats

e Unlessvery specialized beam-combining optics are used it isonly
possible to correct the OPD for asingle direction in the sky.

— Thisiswhat givesriseto the FOV limitation: g, £ [| /B][l /DI ].

 Astheoptica trainisinair, the OPD is actually different for different
wavelengths since the refractive index n =n(l ).

— Thislongitudinal dispersion impliesthat different locations of the
delay line carts will be required to equalize the OPD at different
wavelengths!

— For a100m basdaline and a source 50° from the zenith this DOPD
corresponds to ~10nmm between 2.0-2.5nmm.

— More precisaly, thisimplies the use of aspectral resolution, R>5
(12) to ensure good fringe contrast (>90%) in the K (J) band.
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Beam combination

The essentia principle hereis:
e AddtheE fields, E;+E,, and then detect the time averaged intensity:

dE,+E)" (Ei+Ey)*i= dE |i+ E [+ &E.E* i+ &E,E,*
= a|E,[*1+ a|E [P+ a2|E,||E,| cos(j ) fi

where | isthe phase difference between E; and E.,.

e In practice there are two straightforward ways of doing this:
— Image plane combination:
 AMBER and aperture masking experiments.
— Pupil plane combination:
* MIDI and systems using fibre couplers (VINCI).
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lmage plane combination

Mix the signalsin afocal planeasinaYoung'sdlit experiment:

In the focused image the transverse
co-ordinate measures the delay.

Fringes encoded by use of a non-
redundant input pupil.

The choice of the number of beams
combined is selected to optimise the
signal-to-noise.

Possible to use dispersion prior to
detection in the direction perpendicular
to the fringes. Allows measurement

of coherence function at multiplel .
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Pupil plane combination

Mix the signals by superposing afocal beams:

Then focus superposed beams onto
a single element detector.

Fringes encoded by use of a non-
redundant modulation of delay of
each beam.

Fringes are visualised by measuring
Intensity versustime.

The number of beams combined is
selected to optimise the S/N and
spectral dispersion can be used
prior to detection.
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| ssues for the future

o Stability and throughput.
o Spectral bandpass.
o Ability to deal with large number of input beams.

Integrated optics 2 and 3-way combiners

Bulk optics 4-way 1-2.5mm combiner.
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Spatial fluctuations

e These are characterized by Fried' s parameter, r,,.
— The circular aperture size over which the mean square wavefront
error is approximately 1 radian.
— Thisscalesas| 95,

— The fluctuations exhibit a particularly steep spectrum: p k13,

— And are potentially limited by an outer scale, L, beyond which
their strength saturates.

— Tel. Diameters > or < r, delimit different regimes of instantaneous
Image structure:

e D<ry,P quas-diffraction limited images with image motion.
 D>r,P high contrast speckled (distorted) images.

— Median ryvalue at Paranal is 15cm at 0.5nmm.
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Solutions

In principle, there are two approaches to deal with spatial fluctuations for
telescopes of finite size:

| /mm 1.25 1.65 2.2 3.5 5.0
ATs 2.7 1.9 1.1 0.7
UTs

« Use an adaptive optics system correcting higher order Zernike modes:
— Can use ether the source or an off-axis reference star to sense atmosphere.
— But need to worry about how bright and how far off axisis sensible.

» Instead, spatialy filter the light arriving from the collectors:
— Thistrades off afluctuating visibility for a variable throughput.
— Can use either a monomode optical fibre or apinhole.
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Mixed and optimal strategies

 What isactualy of interest hereis
using larger apertures to get better
sensitivity to seefainter sources:

— Curves show fringe power /N with
and without the use of a spatial filter.

— And with 2, 5 and 9 non-piston
Zernike modes corrected by an AO
system.

SNR / SNR,

 Implications are:

— Spatial filtering always helps.
— Can work with large D/r, (e.g. £ 10). D/ 1
— For perfect wavefrontsS/N u D.

Ll
1C

0.1
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Spatial fluctuations and AO
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* Influence of guide-star magnitude. This * Influence of off-axisangle. Thisisfor a
isfor MACAO at the VLTI. generic 8m telescope at M. Kea.

NGS systems basically offer only a modest improvement in sky coverage,
but are vital in allowing photons to be collected faster for bright sources.
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Temporal fluctuations

» These are characterized by a coherence time, t,,

— Heuristically thisis the time over which the wavefront phase
changes by approximately 1 radian.

« Related to spatial scale of turbulence and windspeed:

— Assumethat Taylor’s“frozen turbulence” hypothesis holds, i.e.
that the timescale for evolution of the wavefrontsis long compared
with the time to blow past your telescope.

— Obtain a characteristic timescale t,= 0.314 ry/v, with v a nominal
wind velocity. Scalesas| 5°.

 Typical values can range between 3-20ms at 0.5mm.
— Expect larger spatial scales to correspond to longer temporal ones.
— Some evidence that windspeed is inversely correlated with r,,.
— Recent data from Paranal show median value of ~20ms at 2.2nm.
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lmpact on interferometry

optical arrays.

— Short-timescal e fluctuations blur fringes:

* Need to make measurements on
timescales shorter than ~t,

— Long-timescal e fluctuations move the

fringe envelope out of measurable
region.
» Fringe envelope is few microns
 Path fluctuations tens of microns.
» Requires dynamic tracking of piston
errors.

Temporal fluctuations provide a fundamental limit to the sensitivity of
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Figure 1. Path offset from the equal optical path position as a

function of time for three baselines,
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Perturbations to the phase of V

« Apart from forcing any interferometric measurements to be made on a
very short timescale, the other key problem introduced by temporal
wavefront fluctuations is that they alter the phase of the measured
visihbility (i.e. coherence) function.

Simple Fourier inversion of the coherence function becomes impossible.

 How do we get around this problem?

— Dynamically track the atmospheric excursions at the sub-
wavelength level

* Phaseisthen auseful quantity.

— Measure something useful that is independent of the fluctuations.
» Relative phase.
» Closure phase.
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Fringe tracking basics

 Wecan identify several possible fringe-tracking systems:
— Those that ensure we are close to the coherence envel ope.
— Those that ensure we remain within the coherence envel ope.
— Those that lock onto the white-light fringe.

 Thefirst two of these still need to be combined with measurements of
observables that preserve useful phase information.

e Only the last of these allows for direct Fourier inversion of the
measured visibility function.

 Asanaside, the second of these is generally referred to as “ envelope”
tracking or coherencing, while the third is often called “phase”’
tracking.
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Envelope tracking
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Fringe envel ope tracking methods - e.g. group delay tracking.
— Observe fringes in dispersed light.
— Dispersed fringes are tilted when OPD non-zero
— Recover fringe envel ope position using 2-D power spectrum.
— Can integrate for several seconds — high sensitivity.
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Phase tracking

The “easy” way:

— Use abroad-band fringe tracking channel and lock onto white-light
fringe.

— Follow the fringe motion in real-time and sample fast enough so
that fringe motion between samplesis << 180 degrees.

— Can use a broad-band channel to phase-reference other narrow-
band channels:

 Increases effective coherence time to seconds.
» Equivalent to self-referenced adaptive optics on the scale of the array.

— Because it’'s ahigh precision technique it has ~2.5 mag poorer
sensitivity than group-delay tracking.
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Off-axis phase referencing

The “difficult” way: dual-feed operation. Thisiswhat PRIMA aimsto deliver:

— Use bright off-axis reference star

; ) Dual Object Interferomet
to monitor the atmospheric . i

Simultaneous fringe

perturbations In real-time. ‘ 2 ‘ measurement of two stars ‘
c— ® for differential astrometry
— Feed corrections to parallel delay- , Lpinhote
lines observing science target. »0/7 rRry beam Combine §/
A —line
— Useametrology system to tietwo| T N ‘ ‘
optical paths together. Metrology "ties" the [Mefrology] — |

two beam combiners —
together (~10 nm)

— In principle can extend effective
coherence time by orders of magnitude if the white-light fringe is tracked.
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Dual-feed interferometry (cont’ d)

Practical 1ssues:

— Off-axis wavefront perturbations
become uncorrelated as field angle

increases and | decreases.

— With 1¢field-of-view <1% of sky
has a suitably bright reference source

(H<12).

— Metrology is non-trivial.

— Laser guide stars are not suitable

reference sources.
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Good observables

* Inthe absence of a PRIMA-like system, optical/IR interferometrists
have had to rely upon measuring phase-type quantities that are immune
to atmospheric fluctuations.

* These are self-referenced methods - i.e. they use simultaneous
measurements of the source itself:

— Reference the phase to that measured at a different wavelength -
differential phase:

» Depends upon knowing the source structure at some wavelength.
* Need to know atmospheric path and dispersion.

— Reference the phase to those on different baselines - closure phase:
 |Independent of source morphology.
* Need to measure many baselines at once.
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Closure phases (1)

o For anarray of N telescopes, with N-1 unknown phase perturbations
we can measure N(N-1)/2 visibility phases.

o Thisimpliesthat there must be (N-1)(N-2)/2 quantities we can infer
from our measurements that only depend on the source structure.

* The corresponding closure phases are one such set of these.

Ntels 3 4 5 8 N
Nias 3 6 10 28 N(N-1)/2
Neios indep 1 3 6 21 (N-1)(N-2)/2
Nped 1 4 10 56 N(N-1)(N-2)/6
Frac prase | 0.3 050 | 060 | 0.75 1-2IN)
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Atmospheric turbulence

elescope 1
Baseline 1-2

Telescope 2

Baseline 2
Baseline 3-1

" > Telescope 3




Using “good” observables

Average them (properly) over many realisations of the atmosphere.

Differential phase, if we are comparing with the phase at a wavelength at
which the source is unresolved, is a direct proxy for the Fourier phase we
need.

— Can then Fourier invert straightforwardly.

Closure phase is apeculiar linear combination of the true Fourier phases:

— Infact, it isthe argument of the product of the visibilities on the
baselines in question, hence the name triple product (or bispectrum).

V1 ,VoaVa = Vool Vsl V| €XPI[F 5+ Fog+ Fag]) = Tiog

— S0 we have to use the closure phases as additional constraints in some
nonlinear iterative inversion scheme.
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Sengitivity (1)

 We have mentioned earlier that sensitivity in an interferometric context
really means two things:

— It must be possible to stabilize the array in real time against atmospheric-
induced fluctuations of the OPD.

— Oncethisis satisfied, we need to be able to build up enough signal-to-
noise on the astronomical fringe parameters of interest.

 Theessential implication of thisisthat the “instantaneous’ fringe
detection S/N has to be high enough to “track” fringes.

e Thissignal/noise ratio basically scales as:
SIN p [VNJ? / [(N+Ngaid?+ 2(N+Neerd NV + 2(N i) (S ree) T2

with V' = apparent visibility, N = detected photons, N, = dark current, N, =
number of pixels, s, .4 = readout noise/pixel.
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Sensitivity (ii)
SIN ~ [VN]Z[N? + 2V2N3 +2N 2s4]V2
~[V?N]? , witha=1/20r 1.
* Ingeneral wewant thistobe> 1.

— Good fringe visibility is more important that more light.

— Resolved sources have V << 1. Thisimplies very large reductions in the
sensitivity of an interferometric array if the source being used to stabilize
the array isresolved.

— On the longest interferometric baselines, the S/N will always be low.

— Bright sources are generally big - the small ones are faint!
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Sensitivity
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Sensitivity

T=40000, 10000, 6000, 3200 & 1000K
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Sensitivity (iii)

e Insummary:
— Need to have enough V2N to stabilize the array.
— Then we need to have enough integration time to build up a useful
S/N on the science signal.
— The problem is that many sources of interest will have small V.

o Solutions:
— Use off-axis reference sources for stabilization (PRIMA).
— Decompose all long baselines into shorter ones where V is not so
low.
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Cdlibration

* The basic observables we wish to estimate are fringe amplitudes and
phases.

* In practicethereliability of these measurementsis generally limited by
systematic errors, not the S/N we have just discussed.

« Hencethereisacrucial need to calibrate the interferometric response:

— Measurements of sources with known amplitudes and phases.
» Unresolved targets close in time and space to the source of interest.
— Careful design of instruments:
o Spatial filtering.
— Measurement of quantities that are less easily modified by
systematic errors:
» Phase-type quantities.
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Summary

e Sampling of the (u, v) plane
» What is needed for the scientific questions being addressed.
» Will the array operate satisfactorily on these baselines,
 Delaylines
 Intrinsic performance, dispersion at long baselines,
o Spatia fluctuations
* Impact on sensitivity, potential limitations of AO.
 Temporal fluctuations

» Impact on sensitivity, need for fringe tracking.
» Good observables and how these are used.

e Sengitivity
* An appropriate measure of thisin terms of stabilizing the array.
* V2N scaling.

Calibration

» Importance of thisto deliver useful science.
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