# Interferometric Image Reconstruction 4th work-package of Opticon FP7

Éric Thiébaut (CRAL), John Young (Cambridge), Gilles Duvert (IPAG/JMMC), Paulo Garcia (Univ. Porto), Martin Vannier (OCA), Jean-Baptiste le Bouquin (IPAG/JMMC), Guillaume Mella (IPAG/JMMC), Jörg-Uwe Pott (MPIA Heidelberg), Thibaut Paumard (LESIA)

JMMC, 17th of November 2015, Nice



### **Rationale and context**

- ▶ with 4 to 6 telescopes recombiners, 2nd generation VLTI instruments and recent optical interferometers (*e.g.*, CHARA) are targeted at multi-spectral imaging ( $R \sim 10^4$ ,  $\Delta \theta \sim 10^{-3}$  arcsec)
- for the scientific returns of these instruments, tools for image reconstruction usable by non-expert astronomers are required
- image reconstruction algorithms for interferometry (BSMEM, WISARD, MiRA, etc.) are mature but require substantial expertise
- mostly provide monochromatic image reconstruction
- lack of documentation
- not necessarily freely available

## Summary of the project

Make the R&D and tutorial/software development to provide image reconstruction algorithms from optical interferometry data to general astronomers.

É. Thiébaut, et al.

## Sub-workpackages

- WP1 Project management (CRAL)
- WP2 Data samples and astrophysical model images
  - model images of astrophysical objects (FEUP)
  - synthetic data for LINC-Nirvana, Gravity and Matisse (MPIA, LESIA, OCA)
  - real data from Amber, LINC-Nirvana, Vega/Chara and Pionier (IPAG, MPIA, OCA)
- WP3 Image reconstruction algorithms
  - unified image reconstruction description (UC)
  - algorithms derived from BSMEM, MiRA and Wisard (UC, CRAL, OCA)
- WP4 User interface and user guides
  - algorithm interface specification (CRAL)
  - graphical user interface (JMMC)
  - tests and benchmarks (JMMC)
  - documentation and cookbooks (FEUP)



# Algorithm Zoo

| Name     | Authors          | Optimization                                         | Regularization |
|----------|------------------|------------------------------------------------------|----------------|
| BSMEM    | Buscher, Baron,  | trust region gradient                                | MEM-prior      |
|          | Young            |                                                      |                |
| WISARD   | Meimon,          | quasi-Newton <sup>(*)</sup><br>plus self-calibration | many           |
|          | Mugnier,         |                                                      |                |
|          | Le Besnerais     |                                                      |                |
| MiRA     | Thiébaut         | quasi-Newton <sup>(*)</sup>                          | many           |
| MACIM    | Ireland, Monnier | simulated annealing                                  | MEM            |
| SQUEEZE  | Baron, Monnier,  | parallel tempering                                   |                |
|          | Kloppenborg      |                                                      |                |
| BBM      | Hofmann,         | matching pursuit                                     | sparsity       |
|          | Weigelt          |                                                      |                |
| IRBis    | Hofmann,         | conjugate gradients many                             | many           |
|          | Weigelt          |                                                      | many           |
| Sparco   | Kluska           | (based on MiRA)                                      |                |
| Self-Cal | Millour          | (based on MiRA + self-calibration)                   |                |
| Painter  | Schutz et al.    | ADMM                                                 | many           |
| MiRA-3D  | Soulez           | ADMM                                                 | many           |
| ( )      |                  |                                                      |                |

(\*) OptimPack

JMMC

# Reconstructiong a reliable image require expertise



- object: pi Gru
- instrument: Pionier
- credits: Claudia Paladini, Jean-Baptiste le Bouquin

- algorithm: MiRA with carefully chosen
  - priors
  - initial image

## **Objectives and Contents**

- 1st deliverable of JRA
- formal description of image reconstruction in optical interferometry;
- general: all considered algorithms (BSMEM, WISARD, MiRA, etc.) can be expressed in this framework;
- required to homogenize and unify the inputs and outputs of these algorithms;
- didactic: give background information needed for the end users to understand the principle of image reconstruction (this knowledge is needed to properly use the software);
- document available at:

https://github.com/emmt/OI-Imaging-JRA

Inverse approach provides a very general framework to describe most (if not all) image reconstruction algorithms.

The recipes involve:

- 1. a **direct model**: model of the brightness distribution and its Fourier transform;
- 2. a criterion to determine a unique and stable solution;
- 3. an **optimization strategy** to find the solution.



### General image model

Object brightness distribution in angular direction  $\theta$ :

$$I_{\lambda}(\boldsymbol{\theta}) = \sum_{n} b_{n}(\boldsymbol{\theta}) x_{n} \quad \text{with} \quad \begin{cases} b_{n}(\boldsymbol{\theta}) & \text{basis of functions} \\ \boldsymbol{x} \in \mathbb{R}^{N} & \text{image parameters} \end{cases}$$
$$\stackrel{\text{F.T.}}{\longmapsto} \quad \hat{I}_{\lambda}(\boldsymbol{\nu}) = \sum_{n} \hat{b}_{n}(\boldsymbol{\nu}) x_{n}$$

### **Complex visibility model**

$$y_k = \hat{I}_\lambda(\boldsymbol{\nu}_k) = \sum_n H_{k,n} x_n$$
 with  $\begin{cases} \boldsymbol{\nu}_k = \boldsymbol{B}_k / \lambda & \text{(sampled frequency)} \\ H_{k,n} = \hat{b}_n(\boldsymbol{\nu}_k) \end{cases}$ 

in matrix notation:

$$oldsymbol{y} = \mathbf{H} \cdot oldsymbol{x}$$

Image reconstruction amounts to solving an optimization problem

$$oldsymbol{x}^+ = \operatorname*{arg\,min}_{oldsymbol{x} \in \mathbb{X}} \left\{ f_{\mathsf{data}}(\mathbf{H} \cdot oldsymbol{x}) + \mu \, f_{\mathsf{prior}}(oldsymbol{x}) 
ight\}$$

- f<sub>data</sub> enforces agreement with the data;
- H implements the direct model (*e.g.*, nonequispaced Fourier transform)
- $f_{\text{prior}}$  enforces **priors** ( $\mu \ge 0$  is a tuning parameter);
- ► X enforces **strict constraints** (normalization, positivity):

$$\mathbb{X} = \left\{ \boldsymbol{x} \in \mathbb{R}^{N} \mid \sum_{n} x_{n} = 1; x_{n} \ge 0, \forall n = 1, \dots, N \right\}$$

# What kind of data to use?

- Wisard (Meimon et al. 2005): phase closure + powerspectrum;
- BSMEM (Buscher 1994; Baron and Young 2008), MiRA (Thiébaut 2008): any available data;
- BBM (Hofmann and Weigelt 1993), IRBis (Hofmann et al. 2014): bispectrum;
- etc.
- consensus: data in OI-FITS format (Pauls et al. 2005)
- no consensus: definition of f<sub>data</sub>(x);



reconstruction with powerspectrum only



powerspectrum and

phase closures

## Various regularizations

1. Quadratic smoothness:

$$f_{\mathsf{prior}}(oldsymbol{x}) = \left\|oldsymbol{x} - \mathbf{S} \cdot oldsymbol{x}
ight\|^2$$

where  ${\bf S}$  is a smoothing operator (by finite differences).

2-3. Compactness (le Besnerais et al. 2008):

$$f_{\mathsf{prior}}({m{x}}) = \sum\nolimits_n w^{\mathsf{prior}}_n {m{x}}^2_n$$

with  $w_n^{\text{prior}} = \| \boldsymbol{\theta}_n \|^{\beta}$  and  $\beta = 2$  or 3 yields *spectral smoothness*.

4-5. Non-linear smoothness:

$$f_{\text{prior}}(\boldsymbol{x}) = \sum_{n} \sqrt{\|\nabla x_n\|^2 + \epsilon^2}$$

where  $\|\nabla x_n\|^2$  is the squared magnitude of the spatial gradient in the image at *n*th pixel and  $\epsilon \to 0$  yields **total variation** (Rudin et al. 1992) while  $\epsilon > 0$  yields **edge-preserving smoothness** (Charbonnier et al. 1997).

## Various regularizations (continued)

6-8. Separable norms ( $\ell_p$ ):

$$f_{\text{prior}}(\boldsymbol{x}) = \sum\nolimits_n \left( x_n^2 + \epsilon^2 \right)^{p/2} \approx \sum\nolimits_n |x_n|^p$$

where  $\epsilon > 0$  and p = 1.5, 2, and 3. Note that p = 1 is what is advocated in *compress sensing* (Donoho 2006) while p = 2 corresponds to regular *Tikhonov regularization*.

9-11. Maximum entropy methods (Narayan and Nityananda 1986):

$$f_{\text{prior}}(\boldsymbol{x}) = -\sum\nolimits_n h(x_n; \bar{x}_n).$$

Here the prior is to assume that the image is drawn toward a prior model  $\bar{x}$  according to a non quadratic potential h, called the *entropy*:

# Choosing the regularization

- there are many different possibilities
- a specific choice affects the result:
  - sparsity,
  - smoothness,
  - etc.
- users must be aware and choose wisely
- users must be encouraged to try different settings and compare





## Tuning the regularization level

Observer has to choose the regularization level  $\mu \ge 0$ .

by visual assessment of:

$$oldsymbol{x}^+ = rgmin_{oldsymbol{x} \in \mathbb{X}} \left\{ f_{\mathsf{data}}(\mathbf{H} \cdot oldsymbol{x}) + \mu \, f_{\mathsf{prior}}(oldsymbol{x}) 
ight\}$$

a GUI will help

by solving the equivalent problem:



É. Thiébaut, et al.

# Algorithm Interface Specification<sup>(\*)</sup>

### unified inputs and outputs of image reconstruction:

- ▶ input (in a FITS file):
  - OI-FITS for the data
  - image parameters (pixel size, etc.)
  - optional initial image
  - choice for the regularization and its parameters
- output (in a FITS file):
  - OI-FITS-like for the model of the data
  - current/final image

### features:

- compatibility with OI-FITS (version 1 and 2)
- easy to resume a reconstruction or change parameters
- history maintained
- can be generalized to model fitting
- easy to display the results (image and actual fit to the data)

(\*) draft available at: https://github.com/emmt/OI-Interface-JRA



### **Sharing data**

▶ support for OIFITS  $\rightarrow$  OIFITS-2 (in C/C++<sup>1</sup>, in Julia<sup>2</sup>, in Yorick<sup>3</sup>)

### **Sharing Software**

- make algorithms freely available (done)
- make software portable (at least easy to install)
  - current software: C/C++, IDL/GDL, FORTRAN, Yorick, MatLab
  - alternatives: Java, Julia, NumPy, ...
- make software easy to use (that's R&D in progress)
- provide state of the art algorithms (e.g., massive rewrite of OptimPack<sup>4</sup> for numerical optimization with support in C, Yorick and Julia<sup>5</sup>)

### preserve future developments of algorithms (multi-λ)

<sup>1</sup>https://github.com/jsy1001/oifitslib <sup>2</sup>https://github.com/emmt/0IFITS.jl <sup>3</sup>https://github.com/emmt/Y0IFITS <sup>4</sup>https://github.com/emmt/0ptimPack <sup>5</sup>https://github.com/emmt/0ptimPack.jl

## Achievements and Roadmap

### (almost) done

- unified description of image reconstruction
- interface specification
- portable code
  - OI-FITS-2
  - numerical libraries (optimization, etc.)

#### in progress

- modify algorithms (BSMEM, MiRA and WISARD) to account for input/output format
- design graphical user interface (GUI)
- test algorithms and interface on real and synthetic datasets
- write documentation and cookbooks

### a few years ago:

 reconstruction from individual spectral slices (*e.g.* le Bouquin et al. 2009)

now:

- Sparco (Kluska et al. 2014): semi-parametric approach
- MiRA-3D (Soulez, et al. 2013): spatio-spectral regularization
- Painter (Schutz et al. 2014)
- Self-Cal (Millour)
- good side effects of sharing algorithms

## • truly multi- $\lambda$ image reconstruction is:

- much more powerful not only due to the improved u-v coverage
- mandatory to fully exploit instruments (in particular GRAVITY and MATISSE)
- more difficult to implement and more complex to use



Herbig Be HD98922, PIONIER data in H band, MiRA-3D algorithm (Soulez *et al.*, 2014)



- Baron, F. and Young, J. S.: 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7013 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, p. 70133X
- Buscher, D. F.: 1994, in J. G. Robertson and W. J. Tango (eds.), *IAU Symp. 158: Very High Angular Resolution Imaging*, pp 91–93
- Charbonnier, P., Blanc-Féraud, L., Aubert, G., and Barlaud, M.: 1997, *IEEE Trans. Image Process.* 6(2), 298
- Donoho, D.: 2006, Communications on Pure and Applied Mathematics 59(7), 907
- Hofmann, K.-H. and Weigelt, G.: 1993, Astron. Astrophys. 278(1), 328
- Hofmann, K.-H., Weigelt, G., and Schertl, D.: 2014, A&A 565, A48
- Kluska, J., Malbet, F., Berger, J.-P., Baron, F., Lazareff, B., Le Bouquin, J.-B., Monnier,
  - J. D., Soulez, F., and Thiébaut, É.: 2014, Astron. Astrophys. 564, A80
- le Besnerais, G., Lacour, S., Mugnier, L. M., Thiébaut, É., Perrin, G., and Meimon, S.: 2008, *IEEE J. Selected Topics in Signal Process.* **2(5)**, 767
- le Bouquin, J.-B., Lacour, S., Renard, S., Thiébaut, E., and Merand, A.: 2009, Astron. Astrophys. 496, L1
- Meimon, S., Mugnier, L. M., and le Besnerais, G.: 2005, Optics Letters 30(14), 1809
- Narayan, R. and Nityananda, R.: 1986, Annual Rev. Astron. Astrophys. 24, 127
- Pauls, T. A., Young, J. S., Cotton, W. D., and Monnier, J. D.: 2005, PASP 117, 1255
- Rudin, L., Osher, S., and Fatemi, E.: 1992, Physica D 60, 259-

Schutz, A., Ferrari, A., Mary, D., Soulez, F., Thiébaut, É., and Vannier, M.: 2014, J. Opt.

MMC

## Partnership

- Lyon: CRAL (Éric Thiébaut)
  - image reconstruction (MiRA)
- Univ. Porto (Paulo Garcia)
  - sciences cases, cookbooks, tests
- Univ. Cambridge (John Young)
  - image reconstruction algorithm (BSMEM)
- MPIA Heidelberg (Jörg-Uwe Pott)
  - LINC-Nirvana (LBT) case
- IPAG/JMMC (Gilles Duvert, Guillaume Mella, Jean-Baptiste le Bouquin)
  - data from PIONIER and AMBER
  - graphical user interface
- OCA (Martin Vannier)
  - data from VEGA, simulations (MATISSE)
- LESIA (Thibaut Paumard)
  - simulation and test cases (GRAVITY)