

Some news from GRAVITY+ and its new AO system

On the behalf of the GRAVITY+ consortium

GRAVITY+ in short

GPAO in short – Objectives

Exoplanets

Stellar black holes

GPAO in short – In real life

ANTHONY.BERDEU@OBSPM.FR

JOURNÉES DU JMMC 2025 – SOME NEWS FROM GRAVITY+ AND ITS NEW AO SYSTEM

NGS in operation – In short: this works!

➢ We did not break the IR modes

UXTau (long exposure)

Open/Close loop

Galactic center (real time)

MACAO-like (50 modes) vs GPAO (500 modes)

Strong improvement from MACAO

NGS in operation – Performances

Bright end \Rightarrow Strehl up to 90% Faint end \Rightarrow G = 12.5 limited magnitude

NGS in operation – Performances

Fringe tracking at K = 13 mag and 100Hz Much more robust to weather conditions

Fig. 7. Comparison between MACAO and GPAO AO of the $P_{5\%}/P_{95\%}$ injection metric histograms for the GRAVITY fringe tracker. The flux dropouts, represented by $P_{5\%}/P_{95\%}$ values close to zero, are significantly reduced by GPAO.

Manhattan + GPAO ⇒ Piston mode sensibly improved <120nm RMS in NGS_VISc

JOURNÉES DU JMMC 2025 – SOME NEWS FROM GRAVITY+ AND ITS NEW AO SYSTEM

NGS in operation – Early science

Exoplanets

HR8799

ь

Fig. 9. Two GRAVITY on-axis spectra of the young giant planet HR 8799 e, one obtained with the new GPAO system and one obtained with the old MACAO system. An improvement in the SNR of a factor of ~ 10 in a comparable exposure time can be seen clearly.

Fig. 10. GRAVITY off-axis spectrum of the brown dwarf companion HD 4113 C obtained with the new GPAO system compared to the off-axis spectrum of the exoplanet 51 Eri b obtained with the old MACAO system. We note the two different y-axes for the two objects, showing that a spectrum with a similar SNR can now be obtained with the new GPAO system for a ~ 10 times fainter object as compared to the old MACAO system.

2.4

2.5

NGS in operation – Early science

Active Galaxy nuclei / supermassive black hole

GRAVITY, Shimizu+, Nature 627 (2024)

NGS in operation – Early science

When extreme AO meets interferometry

Current ExoGRAVITY detection limits

Coming soon: Laser Guide Stars (LGS)

LGS currently being integrated at ESO/Garching...

Laser installation \Rightarrow August/September Laser commissioning \Rightarrow September/October GPAO LGS commissioning \Rightarrow November/December STAY TUNED!

Picture taken during the January 2026 VLTI run ϑ

ANTHONY.BERDEU@OBSPM.FR

Adaptive optics: some perspectives

1. We have access to awesome telemetry... ●

ANTHONY.BERDEU@OBSPM.FR

JOURNÉES DU JMMC 2025 – SOME NEWS FROM GRAVITY+ AND ITS NEW AO SYSTEM

Adaptive optics: some perspectives

Conclusion

- > NGS modes \Rightarrow working great!
- > LGS modes \Rightarrow will be working great!
- Many more science to come
 - In high angular resolution astrophysics
 - In adaptive optics

First Light for the GRAVITY+ Adaptive Optics: Extreme Adaptive Optics for the Very Large Telescope Interferometer

Thank you for your attention!

