## LITpro

## Lyon's Interferometric Tool prototype

a model fitting software

Isabelle Tallon-Bosc, Michel Tallon, Guillaume Mella Ferréol Soulez, Laurent Bourgès, Hervé Beust,


## LITpro assets

- accessible via a graphical User Interface
- easy to use
- documented


JMMC User Support

- integrated into "JMMC"
- interoperable with other tools

( ) Laib I'Obseivatoire LESIA
()bservatoire $\square$ SYDNEY Australian National
University SANGYO
UNIVERSITY


## Model fitting: an adventure

## with LITpro

Successive steps - in general -:

- observe your data
- build a model
- explore the "chi2 space"
- fit
- also with OIFitsExplorer
- create a setting = data +model
- to fix the initial guess of the fit
- Levenberg-Marquardt algorithm (modified)
- Combined with a Trust Region method
- Bounds on the parameters
- Partial derivatives of the model by finite differences
- analyse the results carefully
- reduced chi2, sig_chi2, correlation matrix, plots

https://releases.jmmc.fr/index.html


M (D) Cbsenvatoire解 SYDNEY Australian National
University KYOTO
SANGYO SANGYO SANGYO
UNIVERSITY

## How to use LITpro

- some demos
- a UD /LB disk CL Lac
- basic functionalities
- helpful plots: chi2_slice, image, uvmap
- advices: fill a notebook, save setting regularly
- a circumstellar disk gam Cas
- data files loaded from OIFITsExplorer
- practice together on a binary

()bservatoire

Ipb_punct()
lpb_background() lpb_disk()
|pb_disk_polar() lpb_nonorm_disk()
Ipb_circle()
Ipb_gaussian()
lpb_ring()
lpb_gaussian_ring()
Ipb_square()
lpb_modulated_circle() - Circle modulated with 1+cos
lpb_elong_disk() - Ellipse (elongated disk)
lpb_nonorm_elong_disk() - Not normalized ellipse (elongated disk)
Ipb_elong_gaussian() - Elongated Gaussian
lpb_elong_ring()
Ipb_elong_limb_power()
lpb_flatten_disk()
p_not normalized Ellipse (flattened disk)
Ipb_flatten_gaussian() - Flattened Gaussian
Ipb_flatten_ring() - Flattened ring
lpb_stretched_disk() - Stretched Gaussian
Ipb_stretched_gaussian() - Stretched Gaussian
Ipb_limb_power() - Limb-darkened disk with power law
lpb_limb_linear() - Limb-darkened disk with linear law
Ipb_limb_quadratic() - Limb-darkened disk with quadratic law
Ipb_limb_sqrt() - Limb-darkened disk with square root law
Ipb_limb_nonlinear_Claret() - Limb-darkened disk with the new non-linear law of Claret (2000)
lpb_blackbody() - Weight with relative flux of black-body
lpb_background_BB()
lpb_punct_BB()
lpb_disk_BB()
lpb_elong_disk_BB()
Ipb_stretched_disk_BB() - Stretched disk with black body emission
Ipb_gaussian_BB() - Uniform disk with black body emission
lpb_stretched_gaussian_BB() - Stretched Gaussian with blackbody
lpb_stretched_gauss_bspline1_ring2() Ipb_stretched_gauss_bspline1_ring4() lpb_stretched_gauss_bspline1_ring8() lpb_stretched_gauss_bspline1_ring16() lpb_stretched_gauss_bspline1_ring32() Ipb_stretched_gauss_bspline3_ring2() lpb_stretched_gauss_bspline3_ring4() Ipb_stretched_gauss_bspline3_ring8() Ipb_stretched_gauss_bspline3_ring16() lpb_stretched_gauss_bspline3_ring32() _-stretch_-_ _- Streaus lpb_stretched modulated circle() - Stretched circle Ring
Ipb_stretched_modulated_gaussian_ring() - Stretched modulated gaussian ring

- Stretched gaussian ring modulated by cubic B-splines - Stretched gaussian ring modulated by cubic B-splines - Stretched gaussian ring modulated by cubic B-splines
- Stretched gaussian ring modulated by cubic B-splines - Stretched gaussian ring modulated by cubic B-splines - Stretched gaussian ring modulated by 8 cubic $B$-splines - Stretched gaussian ring modulated by 8 cubic B -splines - Stretched gaussian ring modulated by 8 cubic B -splines - Stretched gaussian ring modulated by 16 cubic B -splines - Stretched gaussian ring modulated by 32 cubic B -splines

Cobsenvatoire
 SYDNEY Australian
National National
University


KYOTO
SANGYO SANGYO
UNIVERSIT

## A large library of models, built from requests

for ex.: stretched_gauss_bspline3_ring32

- azimuthal variation of intensity
- linear combination of 32 cubic B-splines
+ radial gaussian profil
+ anamorphosis (orientation \& amplitudes variable)
- exact in the uv plane
- the image is calculated from the expressions in the Fourier plane

( $\underset{\text { Lab }}{\text { NOI }}$ -LESIA
()bservatoire $\square$ SYDNEY


## Image Reconstruction Contest, SPIE 2018

Eric Thiebaut (MiRA)



John Young (BSMEM)

Ipb_punct()
lpb_background() lpb_disk()
lpb_disk_polar()
lpb_nonorm_disk()
Ipb_circle()
Ipb_gaussian()
lpb_ring()
lpb_gaussian_ring()
Ipb_square()

Single point (Dirac function) - Background

- Uniform disk with normalized total flux
- Uniform disk with normalized total flux - Not normalized uniform disk
- Gaussian
- Uniform ring
- Gaussian ring
- Uniform square
- Circle modulated with 1+cos
lpb_elong_disk() - Ellipse (elongated disk)
Ipb_nonorm_elong_disk() - Not normalized ellipse (elongated disk)
Ipb_elong_gaussian() - Elongated Gaussian
lpb_elong_ring() - Elongated ring
Ipb_elong_limb_power() - Ellipse (elongated disk)
Ipb_flatten_disk() - Ellipse (flattened disk)
lpb_nonorm_flatten_disk() - Not normalized Ellipse (flattened disk)
Ipb_flatten_gaussian() - Flattened Gaussian
Ipb_flatten_ring() - Flattened ring
lpb_stretched_disk() - Stretched Gaussian
Ipb_stretched_gaussian() - Stretched Gaussian
Ipb_limb_power() - Limb-darkened disk with power law
lpb_limb_linear() - Limb-darkened disk with linear law
Ipb_limb_quadratic() - Limb-darkened disk with quadratic law
Ipb_limb_sqrt() - Limb-darkened disk with square root law
Ipb_limb_nonlinear_Claret() - Limb-darkened disk with the new non-linear law of Claret (2000)
Ipb_blackbody() - Weight with relative flux of black-body
lpb_background_BB()
- Background with black-body emission
- Single point (Dirac function) with black body emission
lpb_elong_disk_BB() - Elongated disk with black body emission
lpb_stretched_disk_BB() - Stretched disk with black body emission
Ipb_gaussian_BB() - Uniform disk with black body emission
lpb_stretched_gaussian_BB() - Stretched Gaussian with blackbody
lpb_stretched_gauss_bspline1_ring2() lpb_stretched_gauss_bspline1_ring4() lpb_stretched_gauss_bspline1_ring8() lpb_stretched_gauss_bspline1_ring16() lpb_stretched_gauss_bspline1_ring32() Ipb_stretched_gauss_bspline3_ring2() lpb_stretched_gauss_bspline3_ring4() Ipb_stretched_gauss_bspline3_ring8() lpb_stretched_gauss_bspline3_ring16() Ipb_stretched_gauss_bspline3_ring32() lpb_stretched_gaussian_ring() - Stretched Gaussian Ring
Ipb_stretched_modulated_circle() - Stretched circle modulated by 1+cos
Ipb_stretched_modulated_gaussian_ring() - Stretched modulated gaussian ring
- Stretched gaussian ring modulated by cubic B-splines - Stretched gaussian ring modulated by cubic B-splines - Stretched gaussian ring modulated by cubic B-splines
- Stretched gaussian ring modulated by cubic B-splines - Stretched gaussian ring modulated by cubic B-splines - Stretched gaussian ring modulated by 8 cubic B-splines - Stretched gaussian ring modulated by 8 cubic $B$-splines - Stretched gaussian ring modulated by 8 cubic B -splines - Stretched gaussian ring modulated by 16 cubic B -splines Stretched gaussian ring modulated by 32 cubic $B$-splines

"Commas" in VIS2 are a chromatic artifact



## V853 Cen: a star with circumstellar environment

## VIS2 \& T3phi with central punct_BB ( $\mathrm{T}_{1}=6750$ fixed) $\boldsymbol{\&}$ stretched_gaussian_BB

```
reduced Chi}2\mathrm{ final }=2.12
fwhm2 = 10.814 +/- 0.192 mas
flux_weight1 = 325.89 +/- 16.4 punct
flux_weight2 = 31.273+/-1.86 shell
stretch_pos_angle2 = 35.785 +/- 1.16 degree
stretch_ratio2 = 0.72009 +/- 0.0119
temperature2 = 1606.2 +/- 35.6 Kelvin
```


## Compatibility with the published results

Chesneau O., Millour F. et al., A\&A 569, LA (2014)


Extracted from the paper : "Our best-match model for the compact array is a two-component model, consisting of an unresolved uniform disk ( $\Theta \leq 2.5$ mas, star component), and a flattened Gaussian (shell component) with a FWHM of the minor axis of $8 \pm 1$ mas, and a major axis of $11 \pm 3$ mas.
The orientation of the major axis is $126 \pm 29 \circ$. The quality of the fit is relatively good with a reduced $\chi 2$ of 1.5."
$\rightarrow$ stretch_ratio $=0.72$ \& orientation of the major axis $=126-90=36 \mathrm{deg}$.
()bservatoir
 SYDNEY
 Autional University

## To compare with the published results

Chesneau O., Millour F. et al., A\&A 569, LA (2014)

Extracted from the paper : "Our best-match model for the compact array is a two-component model, consisting of an unresolved uniform disk ( $\Theta \leq 2.5$ mas, star component), and a flattened Gaussian (shell component) with a FWHM of the minor axis of $8 \pm 1$ mas, and a major axis of $11 \pm 3$ mas.
The orientation of the major axis is $126 \pm 29{ }^{\circ}$. The quality of the fit is relatively good with a reduced $\chi 2$ of 1.5."
$\rightarrow$ stretch_ratio $=0.72$ \& orientation of the major axis $=126-90=\mathbf{3 6} \mathbf{d e g}$.

Fit VIS2 \& T3phi with central punct_BB ( $\mathbf{T}_{\mathbf{1}}=\mathbf{6 7 5 0}$ fixed) $\&$ stretched_gaussian_BB

```
reduced Chi2 final= 2.128
fwhm2 = 10.814 +/- 0.192 mas
flux_weight1 }=325.89+/-16.4 punc
flux_weight2 }=31.273+/-1.86 shell
stretch_pos_angle2 = 35.785 +/- 1.16 degree
stretch_ratio2 = 0.72009+/- 0.0119
temperature2 = 1606.2 +/- 35.6 Kelvin
see the help of the function streched_gaussian_BB
for a better knowledge of the parameters
```

Compatibility (except for chi2 value)


## How to use LITpro

- some demos
- a UD /LB disk CL Lac
- basic functionalities
- helpful plots: chi2_slice, image, uvmap
- advices: fill a notebook, save setting regularly
- a circumstellar disk gam Cas
- open a new setting
- data files loaded from OIFITsExplorer
- practice together on a binary

LESIA


## a circumstellar disk (H band) gam Cas

reduced Chi2: final $=6.803-$ sigma $=0.0454311$
Number of degrees of freedom $=969$
Number of iterations: 15 (max number=200)
Number of evaluations of the model: 164
Final values and standard deviation for fitted parameters:

## How to use LITpro

```
\[
\begin{aligned}
& \text { flatten_ratio3 }=1.4076+/-0.0322 \\
& \text { flux_weight1 }=0.46723+/-0.133 \\
& \text { flux_weight2 }=0.12415+/-0.0137 \\
& \text { flux_weight3 }=0.40861+/-0.138 \\
& \text { major_internal_diameter } 3=0.89034+/-1.18 \text { mas } \\
& \text { minor_axis_pos_angle3 }=107.57+/-1.01 \text { degrees } \\
& \text { width3 }=0.3409+/-0.792 \text { mas }
\end{aligned}
\]
            flatten_ratio3 = 1.4076 +/- 0.0322
            flux_weight1 = 0.46723 +/- 0.133
            flux_weight2 = 0.12415 +/- 0.0137
            width3 = 0.3409 +/- 0.792 mas
```

comparable to the paper but...
reduced chi2 ~ 4
flatten_ratio3 $=1.39 \pm 0.08$
minor_axis_pos_angle $3=102 \pm 9\left(\right.$ adding $\left.90^{\circ}\right)$
width3 $=0.25 \pm 0.26$
flux_weight1 =?
flux_weight2 $=0.14 \pm 0.01$
flux_weight3 $=0.41 \pm 0.06$
C)bservatoire SYDNEY University

## How to use LITpro

- some demos
- a UD /LB disk CL Lac
- basic functionalities
- helpful plots: chi2_slice, image, uvmap
- advices: fill a notebook, save setting regularly
- a circumstellar disk gam Cas
- open a new setting
- data files loaded from OIFITsExplorer
- model to improve
- binary: V1334 cepheid and its companion v1334_Cyg_2012Jul27.oifits

Galenne et al. 2013

- disk
- then disk+punct
- flux ratio estimable without any fit
- Plot Chi2 "with fit"
warning / time calculation
- practice together on a binary
©
()bservatoire SYDNEY University


$$
\text { here } \mathrm{V}_{\min }^{2} \sim 0.9 \rightarrow r \sim 0.026
$$

Cobservatoire nheumars op
SYDNEY Austratian
National University SANGYO UNIVERSITY
reduced Chi2: initial $=0.5026-$ final $=0.4203-$ sigma $=0.0922531$
Number of degrees of freedom $=235$
Number of iterations: 6 (max number= 200)
Number of evaluations of the model: 77
Galenne et al. 2013
Final values and standard deviation for fitted parameters:
diameter1 $=0.51481+/-0.0167$ mas
flux_weight1 $=0.96973+/-0.0626$
flux_weight2 $=0.030268+/-0.00243$
$\mathrm{x} 2=-1.1525+/-0.0299 \mathrm{mas}$
$\mathrm{y} 2=-8.8381+/-0.0168$ mas

Table 4. Summary of the parameters estimated from the model fit.

|  | $2012-07-27$ | $2012-10-01$ |
| :--- | :---: | :---: |
| Single star model |  |  |
| $\theta_{\mathrm{UD}}$ (mas) | $0.565 \pm 0.052$ | $0.487 \pm 0.045$ |
| $\theta_{\mathrm{LD}}$ (mas) | $0.575 \pm 0.052$ | $0.496 \pm 0.045$ |
| $\chi_{r}^{2}$ | 1.63 | 2.08 |
| Binary model |  |  |
| $\theta_{\mathrm{UD}}$ (mas) | $0.494 \pm 0.053$ | $0.436 \pm 0.045$ |
| $\theta_{\mathrm{LD}}$ (mas) | $0.503 \pm 0.053$ | $0.444 \pm 0.045$ |
| $f(\%)$ | $3.15 \pm 0.15$ | $3.08 \pm 0.09$ |
| $\Delta \alpha$ (mas) | $-1.153 \pm 0.030$ | $-0.113 \pm 0.014$ |
| $\Delta \sigma$ (mas) | $-8.836 \pm 0.017$ | $-8.359 \pm 0.009$ |
| $\chi_{r}^{2}$ | 0.34 | 1.24 |


()bservatoire University

## How to use LITpro

- practice yourself
and enjoy!
we are not far
Welcome onto the JMMC User Feedback Form !
(* : required field )

Application:
LITpro
Type:
Evolution Request
Your Email *: your@email
Summary *
Comments



Version:

Reset Submit Query

